You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book features more than 20 papers that celebrate the work of Hajnal Andréka and István Németi. It illustrates an interaction between developing and applying mathematical logic. The papers offer new results as well as surveys in areas influenced by these two outstanding researchers. They also provide details on the after-life of some of their initiatives. Computer science connects the papers in the first part of the book. The second part concentrates on algebraic logic. It features a range of papers that hint at the intricate many-way connections between logic, algebra, and geometry. The third part explores novel applications of logic in relativity theory, philosophy of logic, philoso...
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
This book gives a comprehensive introduction to Universal Algebraic Logic. The three main themes are (i) universal logic and the question of what logic is, (ii) duality theories between the world of logics and the world of algebra, and (iii) Tarskian algebraic logic proper including algebras of relations of various ranks, cylindric algebras, relation algebras, polyadic algebras and other kinds of algebras of logic. One of the strengths of our approach is that it is directly applicable to a wide range of logics including not only propositional logics but also e.g. classical first order logic and other quantifier logics. Following the Tarskian tradition, besides the connections between logic a...
This book constitutes the refereed proceedings of the 32nd Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2006, held in Merin, Czech Republic in January 2006. The 45 revised full papers, including the best Student Research Forum paper, presented together with 10 invited contributions were carefully reviewed and selected from 157 submissions. The papers were organized in four topical tracks on computer science foundations, wireless, mobile, ad hoc and sensor networks, database technologies, and semantic Web technologies.
Computing systems are ubiquitous in contemporary life. Even the brain is thought to be a computing system of sorts. But what does it mean to say that a given organ or system "computes"? What is it about laptops, smartphones, and nervous systems that they are deemed to compute - and why does itseldom occur to us to describe stomachs, hurricanes, rocks, or chairs that way? These questions are key to laying the conceptual foundations of computational sciences, including computer science and engineering, and the cognitive and neural sciences.Oron Shagrir here provides an extended argument for the semantic view of computation, which states that semantic properties are involved in the nature of co...
This volume contains the proceedings of the First International Workshop on Algebraic and Logic Programming held in Gaussig (German Democratic Republic) from November 14 to 18, 1988. The workshop was devoted to Algebraic Programming, in the sense of programming by algebraic specifications and rewrite rule systems, and Logic Programming, in the sense of Horn clause specifications and resolution systems. This includes combined algebraic/logic programming systems, mutual relations and mutual implementation of programming paradigms, completeness and efficiency considerations in both fields, as well as related topics.
"From nothing I have created a new different world," wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture. The papers in this volume, which commemorates the 200th anniversary of the birth of János Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of János Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics.
"We prove that any variety of relation algebras which contains an algebra with infinitely many elements below the identity, or which contains the full group relation algebra on some infinite group (or on arbitrarily large finite groups), must have an undecidable equational theory. Then we construct an embedding of the lattice of all subsets of the natural numbers into the lattice of varieties of relation algebras such that the variety correlated with a set [italic capital]X of natural numbers has a decidable equational theory if and only if [italic capital]X is a decidable (i.e., recursive) set. Finally, we construct an example of an infinite, finitely generated, simple, representable relation algebra that has a decidable equational theory.'' -- Abstract.