You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Developments in the area of biomaterials, bionanotechnology, tissue engineering, and medical devices are becoming the core of health care. Almost all medical specialties involve the use of biomaterials, and research plays a key role in the development of new and improved treatment modalities. This volume focuses on several current trends in tissue engineering, remodelling and regeneration. Leading researchers describe the use of nanomaterials to create new functionalities when interfaced with biological molecules or structures. In addition to coverage of basic science and engineering aspects, a range of applications in bionanotechnology are presented, including diagnostic devices, contrast agents, analytical tools, physical therapy applications, and vehicles for targeted drug delivery. The use of polymers, alloys, and composites, or a combination of these, for biomaterials applications in orthopaedics is also explored. These contributions represent essential reading for the biomaterials and biomedical engineering communities, and can serve as instructional course lectures targeted at graduate and post-graduate students.
This comprehensive volume provides current, state-of-the-art information on specialty polymers that can be used for many advanced applications. The book covers the fundamentals of specialty polymers, synthetic approaches, and chemistries to modify their properties to meet the requirements for special applications, along with current challenges and prospects. Chapters are written by global experts, making this a suitable textbook for students and a one-stop resource for researchers and industry professionals. Key Features: - Presents synthesis, characterization, and applications of specialty polymers for advanced applications. - Provides fundamentals and requirements for polymers to be used in many advanced and emerging areas. - Details novel methods and advanced technologies used in polymer industries. - Covers the state-of-the-art progress on specialty polymers for a range of advanced applications.
This book provides a comprehensive review of synthesis and physicochemical and biological characterization of novel antibacterial biomaterials produced according to original procedures and aimed at medical applications such as wound dressing, soft and hard tissue implants, drug delivery devices, and carriers for cell cultivation. It is intended for all researchers working in the fields of biomaterials and biomedical engineering, as well as medical professionals, science and engineering graduate students, academics, and industrial researchers. Includes in-depth discussions on synthesis and physicochemical characterization of novel poly vinyl alcohol-based hydrogels aimed at wound dressings an...
Over the past 20 years, dental implants have become one of the most common surgical procedures in the treatment of oral cavities, for example for replacing lost teeth. This book outlines aspects of dental implantation in both the surgical and prosthetic stages of treatment. The book covers materials that are used in implantology, bone guided regeneration, structure and surface implants, classification of implants, osseointegration, surgical stages of dental implantation, classification of quality and quality of bone, bone graft therapy before dental implantation, and complications in dental implants. The reader is guided through the process of using digital tools at every stage of treatment,...
Research into the use of calcium phosphates in the development and clinical application of biomedical materials has been a significantly diverse activity conducted by a wide range of scientists, engineers, and medical practitioners, among others. The field of research in this area can, hence, be truly defined as interdisciplinary, and much interesting work leading to imaginative and innovative solutions for the improvement of health outcomes continues to be generated. It has been the intention of this Special Issue to summarise a number of current topical research advances in this area, as well as to review the important area of calcium phosphate-based biomaterials, namely, composites of hydroxyapatite with carbon-based materials. The scientific papers contained in this Special Issue report on advances in the areas of dental-based materials science, bone cements, use of biomaterials created from natural sources, influences of added agents such as adipose stem cells and statins on bioactivity as well as surface influences on electrical potential of biomaterials and uses of glow discharge methods to remove impurities from biomaterial surfaces.
Polymer-based smart materials have become attractive in recent years due to the fact that polymers are flexible and provide many advantages compared to inorganic smart materials: they are low cost, they are easy to process, and they exhibit good performance at nano- and microscale levels. This volume focuses on a different class of polymers that are used as smart materials in the areas of biotechnology, medicine, and engineering. The volume aims to answer these questions: How do we distinguish ‘smart materials’? and How do they work? The chapters lay the groundwork for assimilation and exploitation of this technological advancement. Four of the key aspects of the approach that the authors have developed throughout this book are highlighted, namely the multidisciplinary exchange of knowledge, exploration of the relationships between multiple scales and their different behaviors, understanding that material properties are dictated at the smallest scale, and, therefore, the recognition that macroscale behavior can be controlled by nanoscale design.
Advanced Bioceramics: Properties, Processing, and Applications describes development of bioceramics and biocomposites, which are used in various biomedical applications including bone tissue repair, remodelling and regeneration. It covers the fundamental aspects of materials science and bioengineering, clinical performance in a variety of applications, ISO/ASTM specifications, and opportunities and challenges. Offers a comprehensive view of properties and processing of bioceramics Highlights applications in dentistry, orthopaedic and maxillofacial implants, and regenerative and tissue engineering Covers ISO/ASTM specifications such as processing, clinical applications, recycling/reuse and disposal standards Explores health, environmental and ethical issues With contributions from eminent editors and recognized authors around the world, this book should serve as an important reference for academics, scientists, researchers, students and practitioners in materials science and biomedical engineering. It is to assist in the design of novel, targeted and personalised bioceramic-based solutions to advanced healthcare.
The scientific advances in life sciences and engineering are constantly challenging, expanding, and redefining concepts related to the biocompatibility and safety of medical devices. New biomaterials, new products, and new testing regimes are being introduced to scientific research practices. In order to provide clinically predictive results and to ensure a high benefit–risk ratio for patients, we need to optimize material and implant characteristics, and to adapt performance and safety evaluation practices for these innovative medical devices. Various characteristics related to materials and implant development such as raw materials composition, implant surface morphology, design, geometr...