You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers a wide range of topics relating to carbon nanomaterials, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive chemical, physical, optical, and even magnetic properties for various applications, considerable effort has been made to employ carbon nanomaterials (e.g., fullerenes, carbon nanotubes, graphene, nanodiamond) as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment. Tremendous progress has been made and the scattered literature continues to grow rapidly. With chapters by world-renowned experts providing an overview of the state of the science as well as an understanding of the challenges that lie ahead, Carbon Nanomaterials for Biomedical Applications is essential reading not only for experienced scientists and engineers in biomedical and nanomaterials areas, but also for graduate students and advanced undergraduates in materials science and engineering, chemistry, and biology.
Disposable electrodes have been widely used as a sensing platform in electrical and electrochemical sensors owing to the possibility of quantitative detection using clinical biomarkers with high precision, sensitivity and reproducibility, which are necessary for accurate diagnosis of the health condition of an individual. This book focusses on the emerging disposable electrochemical sensors in the health sector and the advancement of analytical devices to monitor diabetic, cancer and cardiovascular patients using different nanomaterials. It discusses the upcoming strategies, advantages and the limitations of the existing devices using disposable electrodes. Uniquely, it covers in-depth knowl...
This book is in honor of the contribution of Professor Xin Jiang (Institute of Materials Engineering, University of Siegen, Germany) to diamond. The objective of this book is to familiarize readers with the scientific and engineering aspects of CVD diamond films and to provide experienced researchers, scientists, and engineers in academia and industry with the latest developments and achievements in this rapidly growing field. This 2nd edition consists of 14 chapters, providing an updated, systematic review of diamond research, ranging from its growth, and properties up to applications. The growth of single-crystalline and doped diamond films is included. The physical, chemical, and engineering properties of these films and diamond nanoparticles are discussed from theoretical and experimental aspects. The applications of various diamond films and nanoparticles in the fields of chemistry, biology, medicine, physics, and engineering are presented.
Fundamentals of Sensor Technology: Principles and Novel Designs presents an important reference on the materials, platforms, characterization and fabrication methods used in the development of chemical sensor technologies. Sections provide the historical context of sensor technology development, review principles for the design of sensing devices and circuits, delve into the most common chemical and biological sensor types, cover unique properties and performance requirements, discuss fabrication techniques, including defining critical parameters, modeling and simulation strategies, and present important materials categories used in sensing applications, such as nanomaterials, quantum dots, ...
"This unique book is the only current publication that provides readers with a brief, yet concise, collection of the latest advances in chemical and biological agent detection and/or their surveillance. Nano and Microsensors for Chemical and Biological Terrorism Surveillance compiles and gives in-depth detail on several detection schemes so that the reader is provided with a general sense of these micro and nanoscale sensing systems and platforms." --Book Jacket.
With contributions from the most prominent experts around the world, this resource provides an accessible summary of electrochemical techniques and the applications of electrochemical concepts to molecular-level systems. It describes the most important electro-active functional supramolecular systems developed so far, including rotaxanes and catenanes as molecular machines and as elements for information processing; dendrimers as molecular batteries, sensors, light harvesting antennae, and drug delivery systems; and bio-hybrid devices.
This is the first comprehensive book covering all aspects of the use of carbonaceous materials in heterogeneous catalysis. It covers the preparation and characterization of carbon supports and carbon-supported catalysts; carbon surface chemistry in catalysis; the description of catalytic, photo-catalytic, or electro-catalytic reactions, including the development of new carbon materials such as carbon xerogels, aerogels, or carbon nanotubes; and new carbon-based materials in catalytic or adsorption processes. This is a premier reference for carbon, inorganic, and physical chemists, materials scientists and engineers, chemical engineers, and others.
The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performance, treatment of stroke and spinal cord injury, and lipid nanostructures.
This second of two volumes on applications in information technology is divided into two main sections. The first covers logic devices and concepts, ranging from advanced and non-conventional CMOS and semiconductor nanowire devices, via various spin-controlled logic devices and concepts involving carbon nanotubes, organic thin films, as well as single organic molecules, right up to the visionary idea of intramolecular computation. The second part, architectures and computational concepts, discusses biologically inspired structures and quantum cellular automata, finishing off by summarizing the main principles and current approaches to coherent solid-state-based quantum computation.
Deep Brain Stimulation: A New Frontier in Psychiatry provides an overview of current developments and the future possibilities of deep brain stimulation for patients with therapy-refractory psychiatric disorders. The side-by-side presentation of clinical applications and animal research provides a truly translational approach. Also included is a special chapter on the ethical issues involved in deep brain stimulation in psychiatry. Deep brain stimulation of selected brain areas has been shown to result in a substantial improvement of symptoms and quality of life in patients suffering from obsessive-compulsive disorder, major depressive disorder and drug addiction. Although it is still an experimental therapy and the number of psychiatric patients that are treated is low, its effectiveness and safety makes deep brain stimulation the most promising therapy for treating other serious and life-threatening psychiatric conditions.