You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The emergence over the past several years of space plasma simula tions as a distinct field of endeavor, rather than simply the somewhat startling offspring of plasma physics, computer simulations and space observations, has necessitated a concentrated effort at interdigitat ing its parent and component fields. After several years of working the benefits of a well-defined interactive community of those without working in the field, a group of those who had gained greatly from setting up joint research projects and other lines of communication, arranged to further these gains by setting up the First International School for Space Simulations, which was organized by Kyoto University and held in...
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 93. A principal goal of space plasma researchers is to understand the influence of various transport processes on each other, even when such processes operate at widely varying spatial and temporal scales. We know that large-scale plasma flows in space lead to unstable conditions with small spatial (centimeters to meters) and temporal (microseconds to seconds) scales. The large-scale flows, for example in the magnetosphere-ionosphere system, involve scale lengths of kilometers to several Earth radii and temporal scales of minutes to hours. We must know specific contextual answers to the questions: Do the small-scale waves (microprocesses) modify the large-scale flows? Do these modifications significantly affect the transport of mass, momentum, and energy? How can such coupling processes and their influences be revealed observationally? And, perhaps most challenging of all, how do we incorporate the microprocesses into theoretical models of larger-scale space plasma transport?
None
The Los Alamos Chapman Conference on Magnetospheric Substorms and Related Plasma Processes can be considered the fourth in a series devoted to magnetospheric substorms, after the Moscow (1971), Houston (1972), and Bryce Mountain (1974) meetings. The main motivation for organizing the Los Alamos Conference was that magnetospheric substorm studies have advanced enough to the point of bringing experimenters, analysts and theorists together to discuss major substorm problems with special emphasis on theoretical interpretations in terms of plasma processes. In spite of an extremely heavy schedule from 8:30 A.M. to 10:00 P.M., every session was conducted in an enjoyable and spirited atmosphere. In fact, during one of the afternoons that we had put aside for relaxation, John Winckler led a group of the attendees in a climb to the ceremonial cave of a prehistoric Indian ruin at Bandelier National Monument, near Los Alamos under a crystal blue sky and a bright New Mexico sun. There, they danced as the former dwellers of the pueblo had, perhaps as an impromptu evocation of a magnetospheric event.
James L. Burch·C. Philippe Escoubet Originally published in the journal Space Science Reviews, Volume 145, Nos 1–2, 1–2. DOI: 10. 1007/s11214-009-9532-7 © Springer Science+Business Media B. V. 2009 The IMAGE and CLUSTER spacecraft have revolutionized our understanding of the inner magnetosphere and in particular the plasmasphere. Before launch, the plasmasphere was not a prime objective of the CLUSTER mission. In fact, CLUSTER might not have ever observed this region because a few years before the CLUSTER launch (at the beginning of the 1990s), it was proposed to raise the perigee of the orbit to 8 Earth radii to make multipoint measu- ments in the current disruption region in the tail...
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 109. The Sun and the terrestrial magnetosphere have been the subjects of active research since the dawn of the space age. The capabilities of observing both systems with greater and greater detail evolved separately until the 1980s, when it was realized that definitive results on the connection between the Earth and the Sun would require a concerted and joint effort. It was also realized that sophisticated solar-terrestrial research communities existed within all the space-faring nations of the world and that no one of them could launch such an effort by itself. This realization led to the creation of the International Solar-Terrestrial Physics (ISTP) program, which now comprises at least 12 spacecraft and includes extensive ground-based observations and theory and modeling efforts.
This book is a comprehensive discussion of all issues related to atmospheric electricity in our solar system. It details atmospheric electricity on Earth and other planets and discusses the development of instruments used for observation.
None
DawnDusk Asymmetries in Planetary Plasma Environments Dawn-dusk asymmetries are ubiquitous features of the plasma environment of many of the planets in our solar system. They occur when a particular process or feature is more pronounced at one side of a planet than the other. For example, recent observations indicate that Earth's magnetopause is thicker at dawn than at dusk. Likewise, auroral breakups at Earth are more likely to occur in the pre-midnight than post-midnight sectors. Increasing availability of remotely sensed and in situ measurements of planetary ionospheres, magnetospheres and their interfaces to the solar wind have revealed significant and persistent dawn-dusk asymmetries....