You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This book constitutes the refereed post-conference proceedings of the 11th IFIP TC 3 World Conference on Computers in Education, WCCE 2017, held in Dublin, Ireland, in July 2017. The 57 revised full papers and 10 short papers were carefully reviewed and selected from 116 submissions during two rounds of reviewing and improvement. The papers are organized in the following topical sections: futures of technology for learning and education; innovative practices with learning technologies; and computer science education and its future focus and development. Also included is "The Dublin Declaration" which identifies key aspects of innovation, development successes, concerns and interests in relation to ICT and education.
This volume is based on lectures given during the program Complex Quantum Systems held at the National University of Singapore's Institute for Mathematical Sciences from 17 February to 27 March 2010. It guides the reader through two introductory expositions on large Coulomb systems to five of the most important developments in the field: derivation of mean field equations, derivation of effective Hamiltonians, alternative high precision methods in quantum chemistry, modern many body methods originating from quantum information, and OCo the most complex OCo semirelativistic quantum electrodynamics.These introductions are written by leaders in their fields; amongst them are Volker Bach, Rafael Benguria, Thomas Chen, and Jan Philip Solovej. Together, they fill a gap between current textbooks and the vast modern literature on complex quantum systems.
This book provides an introduction to topics in non-equilibrium quantum statistical physics for both mathematicians and theoretical physicists. The first part introduces a kinetic equation, of Kolmogorov type, which is needed to describe an isolated atom (actually, in experiments, an ion) under the effect of a classical pumping electromagnetic field which keeps the atom in its excited state(s) together with the random emission of fluorescence photons which put it back into its ground state. The quantum kinetic theory developed in the second part is an extension of Boltzmann's classical (non-quantum) kinetic theory of a dilute gas of quantum bosons. This is the source of many interesting fundamental questions, particularly because, if the temperature is low enough, such a gas is known to have at equilibrium a transition, the Bose–Einstein transition, where a finite portion of the particles stay in the quantum ground state. An important question considered is how a Bose gas condensate develops in time if its energy is initially low enough.
Based on the workshop of the same name, this proceedings volume presents selected research investigating the mathematics of collective phenomena emerging from quantum theory at observable scales. Featured contributions from leading scientists provide a thorough overview of current and active research. Methods from functional analysis, spectral theory, renormalization group theory, and variational calculus are used to prove rigorous results in quantum physics. Topics include superconductivity and mathematical aspects of the BCS theory, the Jellium model and Bose-Einstein condensation, among others. Presenting technical details in an accessible way, this book serves as an introduction to research for advanced graduate students and is suitable for specialists in mathematical physics. The workshop “Macroscopic Limits of Quantum Systems” was held over three days in the spring of 2017 at the Technical University of Munich. The conference celebrated the achievements of Herbert Spohn and his reception of the Max Planck Medal.
Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibr...
This book brings together contributions from anthropologists and folklorists on werewolf legends from all over Europe. Ranging from broad overviews to specific case studies, their chapters highlight the similarities and differences between werewolf narratives in different areas and attempt to explain them. The result of interaction between elite and popular culture, local and external influences, and nature and culture that lasted several centuries or even more, nineteenth- to twenty-first-century werewolf legends represent a kaleidoscope of the darker sides of human life.