You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Who would have thought that listing the positive integers along with their most remarkable properties could end up being such an engaging and stimulating adventure? The author uses this approach to explore elementary and advanced topics in classical number theory. A large variety of numbers are contemplated: Fermat numbers, Mersenne primes, powerful numbers, sublime numbers, Wieferich primes, insolite numbers, Sastry numbers, voracious numbers, to name only a few. The author also presents short proofs of miscellaneous results and constantly challenges the reader with a variety of old and new number theory conjectures. This book becomes a platform for exploring new concepts such as the index of composition and the index of isolation of an integer. In addition, the book displays several tables of particular families of numbers, including the list of all 88 narcissistic numbers and the list of the eight known numbers which are not prime powers but which can be written as the sum of the cubes of their prime factors, and in each case with the algorithm used to create them.
This handbook focuses on some important topics from Number Theory and Discrete Mathematics. These include the sum of divisors function with the many old and new issues on Perfect numbers; Euler's totient and its many facets; the Möbius function along with its generalizations, extensions, and applications; the arithmetic functions related to the divisors or the digits of a number; the Stirling, Bell, Bernoulli, Euler and Eulerian numbers, with connections to various fields of pure or applied mathematics. Each chapter is a survey and can be viewed as an encyclopedia of the considered field, underlining the interconnections of Number Theory with Combinatorics, Numerical mathematics, Algebra, or Probability Theory. This reference work will be useful to specialists in number theory and discrete mathematics as well as mathematicians or scientists who need access to some of these results in other fields of research.
This handbook covers a wealth of topics from number theory, special attention being given to estimates and inequalities. As a rule, the most important results are presented, together with their refinements, extensions or generalisations. These may be applied to other aspects of number theory, or to a wide range of mathematical disciplines. Cross-references provide new insight into fundamental research. Audience: This is an indispensable reference work for specialists in number theory and other mathematicians who need access to some of these results in their own fields of research.
Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson-Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl-Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton-Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
It appears that we live in an age of disasters: the mighty Missis sippi and Missouri flood millions of acres, earthquakes hit Tokyo and California, airplanes crash due to mechanical failure and the seemingly ever increasing wind speeds make the storms more and more frightening. While all these may seem to be unexpected phenomena to the man on the street, they are actually happening according to well defined rules of science known as extreme value theory. We know that records must be broken in the future, so if a flood design is based on the worst case of the past then we are not really prepared against floods. Materials will fail due to fatigue, so if the body of an aircraft looks fine to th...
How and why does the sleeping brain generate dreams? Though the question is old, a paradigm shift is now occurring in the science of sleep and dreaming that is making room for new answers. From brainstem-based models of sleep cycle control, research is moving toward combined brainstem/forebrain models of sleep cognition itself. The book presents five papers by leading scientists at the center of the current firmament, and more than seventy-five commentaries on those papers by nearly all of the other leading authorities in the field. Topics include mechanisms of dreaming and REM sleep, memory consolidation in REM sleep, and an evolutionary hypothesis of the function of dreaming. The papers and commentaries, together with the authors' rejoinders, represent a huge leap forward in our understanding of the sleeping and dreaming brain. The book's multidisciplinary perspective will appeal to students and researchers in neuroscience, cognitive science, and psychology.
Topics in Arithmetical Functions
Principles and Practice of Sleep Medicine, 5th Edition, by Meir H. Kryger, MD, FRCPC, Thomas Roth, PhD, and William C. Dement, MD, PhD, delivers the comprehensive, dependable guidance you need to effectively diagnose and manage even the most challenging sleep disorders. Updates to genetics and circadian rhythms, occupational health, sleep in older people, memory and sleep, physical examination of the patient, comorbid insomnias, and much more keep you current on the newest areas of the field. A greater emphasis on evidence-based approaches helps you make the most well-informed clinical decisions. And, a new more user-friendly, full-color format, both in print and online, lets you find the answers you need more quickly and easily. Whether you are preparing for the new sleep medicine fellowship examination, or simply want to offer your patients today's best care, this is the one resource to use! Make optimal use of the newest scientific discoveries and clinical approaches that are advancing the diagnosis and management of sleep disorders.
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering top...