You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An introductory textbook to Lattice Boltzmann methods in computational fluid dynamics, aimed at a broad audience of scientists working with flowing matter. LB has known a burgeoning growth of applications, especially in connection with the simulation of complex flows, and also on the methodological side.
This book is a formal presentation of lectures given at the 1987 Summer School on Turbulence, held at the National Center for Atmospheric Research under the auspices of the Geophysical Turbulence Program. The lectures present in detail certain of the more challenging and interesting current turbulence research problems in engineering, meteorology, plasma physics, and mathematics. The lecturers-Uriel Frisch (Mathematics), Douglas Lilly (Meteorology), David Montgomery (Plasma Physics), and Hendrik Tennekes (Engineering) ? are distinguished for both their research contributions and their abilities to communicate these to students with enthusiasm. This book is distinguished by its simultaneous focus on the fundamentals of turbulent flows (in neutral and ionized fluids) and on a presentation of current research tools and topics in these fields.
This volume explores high-pressure phenomena, the third fundamental variable altering materials (after the variables of temperature and chemical composition). Pressure is in many ways the most remarkable as it spans some 60 orders of magnitude in the universe.
Contained in this volume are the full texts of the invited general and sectional lectures presented at this conference. The entire field of mechanics is covered, including analytical, solid and fluid mechanics and their applications. Invited papers on the following topics are also presented: Mechanics of large deformation and damage; The dynamics of two-phase flows; Mechanics of the earth's crust.The papers are written by leading experts and provide a valuable key to the latest and most important developments in various sub-fields of mechanics.
This systematic book covers in simple language the physical foundations of evolution equations, stochastic processes and generalized Master equations applied on complex economic systems, helping to understand the large variability of financial markets, trading and communications networks.
Advances in Turbulence VI presents an update on the state of turbulence research with some bias towards research in Europe, since it represents an almost complete collection of the paper presentations at the Sixth European Turbulence Conference, sponsored by EUROMECH, ERCOFTAC and COST, and held at the Swiss Federal Institute of Technology in Lausanne, July 2-5, 1996. The problem of transition, together with the structural description of turbulence, and the scaling laws of fully developed turbulence have continued to receive most attention by the research community and much progress has been made since the last European Turbulence Conference in 1994. The volume is thus geared towards specialists in the area of flow turbulence who could not attend the conference, as well as anybody who wishes quickly to assess the most active current research areas and the groups associated with them.
This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statistical mechanics. This will interest specialists of various fields, especially the (classical and quantum) plasma physics. However, quantum physics — to which a major part is devoted — will be of more interest since, not only it applies to quantum plasma physics, but also to nuclear matter and to strong magnetic field, cosmology, etc. Although the domain of gauge theory is not covered in this book, the topic is not completely forgotten, in particular in the domain of plasma physics. This book is particularly readable for graduate students and a fortiori to young researchers for whom it offers methods and also appropriate schemes to deal with the current problems encountered in astrophysics, in strong magnetic, in nuclear or even in high energy physics.
Alzheimer's disease is one of the major scientific, medical and social challenges of our time. This book (the third volume of proceedings of the Colloques Médecine et Recherche of the Fondation Ipsen pour la Recherche Thérapeutique) is dedicated to neuronal grafting and Alzheimer's disease. The wealth of basic information presented testifies to the progress that has been achieved in intracerebral grafting and to the utility of intracerebral grafting as a tool for the understanding of brain development, adult neuronal plasticity and age-related pathology. An answer to the question, whether neuronal grafting will be useful as a therapy for Alzheimer's disease, must wait for a better understanding of the disease and the identification of animal models that can be used to test potential therapies. Meanwhile, the tool of intracerebral grafting may, in the future, be used to address the pathophysiology of Alzheimer's disease.
Cellular automata are fully discrete dynamical systems with dynamical variables defined at the nodes of a lattice and taking values in a finite set. Application of a local transition rule at each lattice site generates the dynamics. The interpretation of systems with a large number of degrees of freedom in terms of lattice gases has received considerable attention recently due to the many applications of this approach, e.g. for simulating fluid flows under nearly realistic conditions, for modeling complex microscopic natural phenomena such as diffusion-reaction or catalysis, and for analysis of pattern-forming systems. The discussion in this book covers aspects of cellular automata theory related to general problems of information theory and statistical physics, lattice gas theory, direct applications, problems arising in the modeling of microscopic physical processes, complex macroscopic behavior (mostly in connection with turbulence), and the design of special-purpose computers.