You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book examines the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors. It emphasizes the core primacy of three topics necessary for understanding extremes: the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces.
The urgent need to describe and to solve certain problems connected to extreme phenomena in various areas of applications has been of decisive influence on the vital development of extreme value theory. After the pioneering work of M. Frechet (1927) and of R.A. Fisher and L.R.C. Tippett (1928), who discovered the limiting distributions of extremes, the importance of mathematical concepts of extreme behavior in applications was impressively demonstrated by statisticians like E.J. Gumbel and W. Weibull. The predominant role of applied aspects in that early period may be highlighted by the fact that two of the "Fisher-Tippett asymptotes" also carry the names of Gumbel and Weibull. In the last y...
Along with a review of general developments relating to bivariate distributions, this volume also covers copulas, a subject which has grown immensely in recent years. In addition, it examines conditionally specified distributions and skewed distributions.
It appears that we live in an age of disasters: the mighty Missis sippi and Missouri flood millions of acres, earthquakes hit Tokyo and California, airplanes crash due to mechanical failure and the seemingly ever increasing wind speeds make the storms more and more frightening. While all these may seem to be unexpected phenomena to the man on the street, they are actually happening according to well defined rules of science known as extreme value theory. We know that records must be broken in the future, so if a flood design is based on the worst case of the past then we are not really prepared against floods. Materials will fail due to fatigue, so if the body of an aircraft looks fine to th...
This book is a comprehensive guide to extreme value theory in engineering. Written for the end user with intermediate and advanced statistical knowledge, it covers classical methods as well as recent advances. A collection of 150 examples illustrates the theoretical results and takes the reader from simple applications through complex cases of dependence.
Canadian financial institutions have been in rapid change in the past five years. In response to these changes, the Department of Finance issued a discussion paper: The Regulation of Canadian Financial Institutions, in April 1985, and the government intends to introduce legislation in the fall. This paper studi.es the combinantion of financial institutions from the viewpoint of ruin probability. In risk theory developed to describe insurance companies [1,2,3,4,5J, the ruin probability of a company with initial reserve (capital) u is 6 1 -:;-7;;f3 u 1jJ(u) = H6 e H6 (1) Here,we assume that claims arrive as a Poisson process, and the claim amount is distributed as exponential distribution with expectation liS. 6 is the loading, i.e., premium charged is (1+6) times expected claims. Financial institutions are treated as "insurance companies": the difference between interest charged and interest paid is regarded as premiums, loan defaults are treated as claims.
Classical Extreme Value Theory-the asymptotic distributional theory for maxima of independent, identically distributed random variables-may be regarded as roughly half a century old, even though its roots reach further back into mathematical antiquity. During this period of time it has found significant application-exemplified best perhaps by the book Statistics of Extremes by E. J. Gumbel-as well as a rather complete theoretical development. More recently, beginning with the work of G. S. Watson, S. M. Berman, R. M. Loynes, and H. Cramer, there has been a developing interest in the extension of the theory to include, first, dependent sequences and then continuous parameter stationary processes. The early activity proceeded in two directions-the extension of general theory to certain dependent sequences (e.g., Watson and Loynes), and the beginning of a detailed theory for stationary sequences (Berman) and continuous parameter processes (Cramer) in the normal case. In recent years both lines of development have been actively pursued.
Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - "Surveys" contains 11 chapters that provide an up-to-date account of essential aspects of copula models. Part II - "Contributions" collects the extended versions of 6 talks selected from papers presented at the workshop in Warsaw.
This important book provides an up-to-date comprehensive and down-to-earth survey of the theory and practice of extreme value distributions — one of the most prominent success stories of modern applied probability and statistics. Originated by E J Gumbel in the early forties as a tool for predicting floods, extreme value distributions evolved during the last 50 years into a coherent theory with applications in practically all fields of human endeavor where maximal or minimal values (the so-called extremes) are of relevance. The book is of usefulness both for a beginner with a limited probabilistic background and to expert in the field./a
The first references to statistical extremes may perhaps be found in the Genesis (The Bible, vol. I): the largest age of Methu'selah and the concrete applications faced by Noah-- the long rain, the large flood, the structural safety of the ark --. But as the pre-history of the area can be considered to last to the first quarter of our century, we can say that Statistical Extremes emer ged in the last half-century. It began with the paper by Dodd in 1923, followed quickly by the papers of Fre-chet in 1927 and Fisher and Tippett in 1928, after by the papers by de Finetti in 1932, by Gumbel in 1935 and by von Mises in 1936, to cite the more relevant; the first complete frame in what regards pro...