You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Researchers develop simulation models that emulate real-world situations. While these simulation models are simpler than the real situation, they are still quite complex and time consuming to develop. It is at this point that metamodeling can be used to help build a simulation study based on a complex model. A metamodel is a simpler, analytical model, auxiliary to the simulation model, which is used to better understand the more complex model, to test hypotheses about it, and provide a framework for improving the simulation study. The use of metamodels allows the researcher to work with a set of mathematical functions and analytical techniques to test simulations without the costly running and re-running of complex computer programs. In addition, metamodels have other advantages, and as a result they are being used in a variety of ways: model simplification, optimization, model interpretation, generalization to other models of similar systems, efficient sensitivity analysis, and the use of the metamodel's mathematical functions to answer questions about different variables within a simulation study.
This work details the statistical inference of linear models including parameter estimation, hypothesis testing, confidence intervals, and prediction. The authors discuss the application of statistical theories and methodologies to various linear models such as the linear regression model, the analysis of variance model, the analysis of covariance model, and the variance components model.
Developing a model-based approach that enables any cross-over trial, of any degree of imbalance, to be analyzed both for direct effects and for residual effects, using consistent procedures that employ commercially available statistical software, this text offers a guide to the analysis of cross-over designs.;Illustrating practical applications throughout with examples, this book: emphasizes the importance of choosing highly efficient designs that separate treatment and carryover effects; demonstrates the exact methodology needed to handle the analysis of data; presents a new methodology for the analysis of binary and categorical data; and considers the effects of blocking. The appendices facilitate the choosing of an appropriate design for every experimental need.
Explains the role of statistics in improving the quality of collecting and analyzing information for a wide variety of applications. The book examines the function of statisticians in quality improvement. It discusses statistical process control, quality statistical tables, and quality and warranty; quality standards in medicine and public health; Taguchi robust designs and survival models; and more.
Exploring the application and formulation of the EM algorithm, The EM Algorithm and Related Statistical Models offers a valuable method for constructing statistical models when only incomplete information is available, and proposes specific estimation algorithms for solutions to incomplete data problems. The text covers current topics including statistical models with latent variables, as well as neural network models, and Markov Chain Monte Carlo methods. It describes software resources valuable for the processing of the EM algorithm with incomplete data and for general analysis of latent structure models of categorical data, and studies accelerated versions of the EM algorithm.
This rewritten and updated second edition provides comprehensive information on the wide-ranging applications of statistics in the pharmacological field. Focusing on practical aspects, it sets out to bridge the gap between industry and academia.;Reflecting the changes that have taken place since publication of the first edition, this volume covers new topics such as: cancer clinical trials, clinical trials of AIDS patients and animal tumorigenicity studies; the development of antiepileptic drugs; the role of epidemiology in postmarketing trials and adverse drug experience; computer-assisted new drug application (CANDA) submissions; contract research organizations; interim analysis in clinical trials; and room-temperature tests for the stability of drugs.;This work is intended as: a reference for statisticians, biostatisticians, pharmacologists, administrators, managers, and scientists in the pharmaceutical industry; and a text for graduate students taking courses in applied statistics or pharmaceutical statistics.
"This useful volume provides a thorough synthesis of second-order asymptotics in multistage sampling methodologies for selection and ranking unifying available second-order results in general and applying them to a host of situations Contains, in each chapter, helpful Notes and Overviews to facilitate comprehension, as well as Complements and Problems for more in-depth study of specific topics!"
"Contains over 2500 equations and exhaustively covers not only nonparametrics but also parametric, semiparametric, frequentist, Bayesian, bootstrap, adaptive, univariate, and multivariate statistical methods, as well as practical uses of Markov chain models."
This work examines theoretical issues, as well as practical developments in statistical inference related to econometric models and analysis. This work offers discussions on such areas as the function of statistics in aggregation, income inequality, poverty, health, spatial econometrics, panel and survey data, bootstrapping and time series.
Thoroughly revised and reorganized, the fourth edition presents in-depth coverage of the theory and methods of the most widely used nonparametric procedures in statistical analysis and offers example applications appropriate for all areas of the social, behavioral, and life sciences. The book presents new material on the quantiles, the calculation of exact and simulated power, multiple comparisons, additional goodness-of-fit tests, methods of analysis of count data, and modern computer applications using MINITAB, SAS, and STATXACT. It includes tabular guides for simplified applications of tests and finding P values and confidence interval estimates.