You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is an outcome of the Second International Conference on Mathematical Population Dynamics. It is intended for mathematicians, statisticians, biologists, and medical researchers who are interested in recent advances in analyzing changes in populations of genes, cells, and tumors.
This book continues the ICTMA tradition of influencing teaching and learning in the application of mathematical modelling. Each chapter shows how real life problems can be discussed during university lectures, in school classrooms and industrial research. International experts contribute their knowledge and experience by providing analysis, insight and comment whilst tackling large and complex problems by applying mathematical modelling. This book covers the proceedings from the Twelfth International Conference on the Teaching of Mathematical Modelling and Applications. - Covers the proceedings from the Twelfth International Conference on the Teaching of Mathematical Modelling and Applications - Continues the ICTMA tradition of influencing teaching and learning in the application of mathematical modelling - Shows how real life problems can be discussed during university lectures, in school classrooms and industrial research
The year 1986 marked the sesquicentennial of the publication in 1836 of J Sturm's memoir on boundary value problems for second order equations. In July 1986, the Canadian Mathematical Society sponsored the International Conference on Oscillation, Bifurcation and Chaos. This volume contains the proceedings of this conference.
This volume contains the proceedings of a meeting entitled 'Nonlinear Oscillations in Biology and Chemistry', which was held at the University of Utah May 9-11,1985. The papers fall into four major categories: (i) those that deal with biological problems, particularly problems arising in cell biology, (ii) those that deal with chemical systems, (iii) those that treat problems which arise in neurophysiology, and (iv), those whose primary emphasis is on more general models and the mathematical techniques involved in their analysis. Except for the paper by Auchmuty, all are based on talks given at the meeting. The diversity of papers gives some indication of the scope of the meeting, but the pr...
This book provides a systematic introduction to the fundamental methods and techniques and the frontiers of ? along with many new ideas and results on ? infectious disease modeling, parameter estimation and transmission dynamics. It provides complementary approaches, from deterministic to statistical to network modeling; and it seeks viewpoints of the same issues from different angles, from mathematical modeling to statistical analysis to computer simulations and finally to concrete applications.
Introduces concepts from nonlinear dynamics using an almost exclusively biological setting for motivation, and includes examples of how these concepts are used in experimental investigations of biological and physiological systems. One novel feature of the book is the inclusion of classroom-tested computer exercises. This book will appeal to students and researchers working in the natural and physical sciences wanting to learn about physiological systems from a mathematical perspective.
In recent years there has been a growth in interest in studying the heart from the perspective of the physical sciences: mechanics, fluid flow, electromechanics. This volume is the result of a workshop held in July 1989 at the Institute for Nonlinear Sciences at the University of California at San Diego that brought together scientists and clinicians with graduate students and postdoctoral fellows who shared an interest in the heart. The chapters were prepared by the invited speakers as didactic reviews of their subjects but also include the structure, mechanical properties, and function of the heart and the myocardium, electrical activity of the heart and myocardium, and mathematical models of heart function.
Shape optimization deals with problems where the design or control variable is no longer a vector of parameters or functions but the shape of a geometric domain. They include engineering applications to shape and structural optimization, but also original applications to image segmentation, control theory, stabilization of membranes and plates by boundary variations, etc. Free and moving boundary problems arise in an impressingly wide range of new and challenging applications to change of phase. The class of problems which are amenable to this approach can arise from such diverse disciplines as combustion, biological growth, reactive geological flows in porous media, solidification, fluid dynamics, electrochemical machining, etc. The objective and orginality of this NATO-ASI was to bring together theories and examples from shape optimization, free and moving boundary problems, and materials with microstructure which are fundamental to static and dynamic domain and boundary problems.
In recent years experimental and numerical studies have shown that chaos is a widespread phenomenon throughout the biological hierarchy ranging from simple enzyme reactions to ecosystems. Although a coherent picture of the fundamental mechanisms responsible for chaotic dynamics has started to appear it is not yet clear what the implications of such dynamics are for biological systems in general. In some systems it appears that chaotic dynamics are associated with a pathological condi tion. In other systems the pathological condition has regular periodic dynamics whilst the normal non-pathological condition has chaotic dyna mics. Since chaotic behaviour is so ubiquitous in nature and since th...