Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Categories for Quantum Theory
  • Language: en
  • Pages: 337

Categories for Quantum Theory

Monoidal category theory serves as a powerful framework for describing logical aspects of quantum theory, giving an abstract language for parallel and sequential composition, and a conceptual way to understand many high-level quantum phenomena. This text lays the foundation for this categorical quantum mechanics, with an emphasis on the graphical calculus which makes computation intuitive. Biproducts and dual objects are introduced and used to model superposition and entanglement, with quantum teleportation studied abstractly using these structures. Monoids, Frobenius structures and Hopf algebras are described, and it is shown how they can be used to model classical information and complemen...

Categorical Quantum Models and Logics
  • Language: en
  • Pages: 214

Categorical Quantum Models and Logics

This dissertation studies the logic behind quantum physics, using category theory as the principal tool and conceptual guide. To do so, principles of quantum mechanics are modeled categorically. These categorical quantum models are justified by an embedding into the category of Hilbert spaces, the traditional formalism of quantum physics. In particular, complex numbers emerge without having been prescribed explicitly. Interpreting logic in such categories results in orthomodular property lattices, and furthermore provides a natural setting to consider quantifiers. Finally, topos theory, incorporating categorical logic in a refined way, lets one study a quantum system as if it were classical, in particular leading to a novel mathematical notion of quantum-

Operator Theory by Example
  • Language: en
  • Pages: 529

Operator Theory by Example

Aimed at graduate students, this textbook provides an accessible and comprehensive introduction to operator theory. Rather than discuss the subject in the abstract, this textbook covers the subject through twenty examples of a wide variety of operators, discussing the norm, spectrum, commutant, invariant subspaces, and interesting properties of each operator. The text is supplemented by over 600 end-of-chapter exercises, designed to help the reader master the topics covered in the chapter, as well as providing an opportunity to further explore the vast operator theory literature. Each chapter also contains well-researched historical facts which place each chapter within the broader context of the development of the field as a whole.

Introduction to Modern Analysis
  • Language: en
  • Pages: 593

Introduction to Modern Analysis

This textbook provides an introduction to modern analysis aimed at advanced undergraduate and graduate-level students of mathematics. Professional academics will also find this to be a useful reference work. It covers measure theory, basic functional analysis, single operator theory, spectraltheory of bounded and unbounded operators, semigroups of operators, and Banach algebras. Further, this new edition of the textbook also delves deeper into C*-algebras and their standard constructions, von Neumann algebras, probability and mathematical statistics, and partial differential equations.Most chapters contain relatively advanced topics alongside simpler ones, starting from the very basics of modern analysis and slowly advancing to more involved topics. The text is supplemented by many exercises, to allow readers to test their understanding and practical analysis skills.

Solitons, Instantons, and Twistors
  • Language: en
  • Pages: 416

Solitons, Instantons, and Twistors

Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well-behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-time dimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yang-Mills and Einstein equations require twistor theory. Both techniques rely on an ability to repres...

Foundations of Software Science and Computational Structures
  • Language: en
  • Pages: 473

Foundations of Software Science and Computational Structures

  • Type: Book
  • -
  • Published: 2011-03-14
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the 14th International Conference on Foundations of Software Science and computational Structures, FOSSACS 2011, held in Saarbrücken, Germany, March 26—April 3, 2011, as part of ETAPS 2011, the European Joint Conferences on Theory and Practice of Software. The 30 revised full papers presented together with one full-paper length invited talk were carefully reviewed and selected from 100 submissions. The papers are organized in topical sections on coalgebra and computability, type theory, process calculi, automata theory, semantics, binding, security, and program analysis.

Algebra and Coalgebra in Computer Science
  • Language: en
  • Pages: 420

Algebra and Coalgebra in Computer Science

  • Type: Book
  • -
  • Published: 2011-08-27
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the 4th International Conference on Algebra and Coalgebra in Computer Science, CALCO 2011, held in Winchester, UK, in August/September 2011. The 21 full papers presented together with 4 invited talks were carefully reviewed and selected from 41 submissions. The papers report results of theoretical work on the mathematics of algebras and coalgebras, the way these results can support methods and techniques for software development, as well as experience with the transfer of the resulting technologies into industrial practice. They cover topics in the fields of abstract models and logics, specialized models and calculi, algebraic and coalgebraic semantics, and system specification and verification. The book also includes 6 papers from the CALCO-tools Workshop, colocated with CALCO 2011 and dedicated to tools based on algebraic and/or coalgebraic principles.

Computer Science Logic
  • Language: en
  • Pages: 548

Computer Science Logic

  • Type: Book
  • -
  • Published: 2010-08-14
  • -
  • Publisher: Springer

Annotation. This volume constitutes the refereed proceedings of the 24th International Workshop on Computer Science Logic, CSL 2010, held in Brno, Czech Republic, in August 2010. The 33 full papers presented together with 7 invited talks, were carefully reviewed and selected from 103 submissions. Topics covered include automated deduction and interactive theorem proving, constructive mathematics and type theory, equational logic and term rewriting, automata and games, modal and temporal logic, model checking, decision procedures, logical aspects of computational complexity, finite model theory, computational proof theory, logic programming and constraints, lambda calculus and combinatory logic, categorical logic and topological semantics, domain theory, database theory, specification, extraction and transformation of programs, logical foundations of programming paradigms, verification and program analysis, linear logic, higher-order logic, and nonmonotonic reasoning.

Topological Phases of Matter and Quantum Computation
  • Language: en
  • Pages: 240

Topological Phases of Matter and Quantum Computation

This volume contains the proceedings of the AMS Special Session on Topological Phases of Matter and Quantum Computation, held from September 24–25, 2016, at Bowdoin College, Brunswick, Maine. Topological quantum computing has exploded in popularity in recent years. Sitting at the triple point between mathematics, physics, and computer science, it has the potential to revolutionize sub-disciplines in these fields. The academic importance of this field has been recognized in physics through the 2016 Nobel Prize. In mathematics, some of the 1990 Fields Medals were awarded for developments in topics that nowadays are fundamental tools for the study of topological quantum computation. Moreover,...

Deep Beauty
  • Language: en
  • Pages: 487

Deep Beauty

No scientific theory has caused more puzzlement and confusion than quantum theory. Physics is supposed to help us to understand the world, but quantum theory makes it seem a very strange place. This book is about how mathematical innovation can help us gain deeper insight into the structure of the physical world. Chapters by top researchers in the mathematical foundations of physics explore new ideas, especially novel mathematical concepts at the cutting edge of future physics. These creative developments in mathematics may catalyze the advances that enable us to understand our current physical theories, especially quantum theory. The authors bring diverse perspectives, unified only by the attempt to introduce fresh concepts that will open up new vistas in our understanding of future physics.