Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Variational Methods for Potential Operator Equations
  • Language: en
  • Pages: 301

Variational Methods for Potential Operator Equations

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high ...

Weak Convergence Methods for Semilinear Elliptic Equations
  • Language: en
  • Pages: 256

Weak Convergence Methods for Semilinear Elliptic Equations

This book deals with nonlinear boundary value problems for semilinear elliptic equations on unbounded domains with nonlinearities involving the subcritical Sobolev exponent. The variational problems investigated in the book originate in many branches of applied science. A typical example is the nonlinear Schr”dinger equation which appears in mathematical modeling phenomena arising in nonlinear optics and plasma physics. Solutions to these problems are found as critical points of variational functionals. The main difficulty in examining the compactness of Palais-Smale sequences arises from the fact that the Sobolev compact embedding theorems are no longer true on unbounded domains. In this book we develop the concentration-compactness principle at infinity, which is used to obtain the relative compactness of minimizing sequences. This tool, combined with some basic methods from the Lusternik-Schnirelman theory of critical points, is to investigate the existence of positive, symmetric and nodal solutions. The book also emphasizes the effect of the graph topology of coefficients on the existence of multiple solutions.

The Reidemeister Torsion of 3-manifolds
  • Language: en
  • Pages: 263

The Reidemeister Torsion of 3-manifolds

This work discusses the theoretical foundations of torsion, one of the oldest topological variants. It presents the work of Reidmeister, Taubes, Turaev and the author, focusing particularly on diverse examples and techniques rather than abstract generalizations.

Discontinuous Groups of Isometries in the Hyperbolic Plane
  • Language: en
  • Pages: 389

Discontinuous Groups of Isometries in the Hyperbolic Plane

This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups.

Quantum Probability and Related Topics
  • Language: en
  • Pages: 426

Quantum Probability and Related Topics

Quantum Probability and Related Topics is a series of volumes whose goal is to provide a picture of the state of the art in this rapidly growing field where classical probability, quantum physics and functional analysis merge together in an original synthesis which, for 20 years, has been enriching these three areas with new ideas, techniques and results.

Stochastic Finance
  • Language: en
  • Pages: 473

Stochastic Finance

This book is an introduction to financial mathematics. The first part of the book studies a simple one-period model which serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Such models are typically incomplete: They involve intrinsic risks which cannot be hedged away completely. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. In addition to many corrections and improvements, this second edition contains several new sections, including a systematic discussion of law-invariant risk measures and of the connections between American options, superhedging, and dynamic risk measures.

Circle-valued Morse Theory
  • Language: en
  • Pages: 465

Circle-valued Morse Theory

In the early 1920s M. Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory which is now one of the basic parts of differential topology. Circle-valued Morse theory originated from a problem in hydrodynamics studied by S. P. Novikov in the early 1980s. Nowadays, it is a constantly growing field of contemporary mathematics with applications and connections to many geometrical problems such as Arnold's conjecture in the theory of Lagrangian intersections, fibrations of manifolds over the circle, dynamical zeta functions, and the theory of knots and links in the three-dimensional sphere. The aim of the book is to give a systematic treatment of geometric foundations of the subject and recent research results. The book is accessible to first year graduate students specializing in geometry and topology.

Quantum Probability And Related Topics: Qp-pq (Volume Ix)
  • Language: en
  • Pages: 427

Quantum Probability And Related Topics: Qp-pq (Volume Ix)

Quantum Probability and Related Topics is a series of volumes whose goal is to provide a picture of the state of the art in this rapidly growing field where classical probability, quantum physics and functional analysis merge together in an original synthesis which, for 20 years, has been enriching these three areas with new ideas, techniques and results.

Elliptic Curves
  • Language: en
  • Pages: 378

Elliptic Curves

The basics of the theory of elliptic curves should be known to everybody, be he (or she) a mathematician or a computer scientist. Especially everybody concerned with cryptography should know the elements of this theory. The purpose of the present textbook is to give an elementary introduction to elliptic curves. Since this branch of number theory is particularly accessible to computer-assisted calculations, the authors make use of it by approaching the theory under a computational point of view. Specifically, the computer-algebra package SIMATH can be applied on several occasions. However, the book can be read also by those not interested in any computations. Of course, the theory of elliptic curves is very comprehensive and becomes correspondingly sophisticated. That is why the authors made a choice of the topics treated. Topics covered include the determination of torsion groups, computations regarding the Mordell-Weil group, height calculations, S-integral points. The contents is kept as elementary as possible. In this way it becomes obvious in which respect the book differs from the numerous textbooks on elliptic curves nowadays available.

Painlevé Differential Equations in the Complex Plane
  • Language: en
  • Pages: 313

Painlevé Differential Equations in the Complex Plane

This book is the first comprehensive treatment of Painlevé differential equations in the complex plane. Starting with a rigorous presentation for the meromorphic nature of their solutions, the Nevanlinna theory will be applied to offer a detailed exposition of growth aspects and value distribution of Painlevé transcendents. The subsequent main part of the book is devoted to topics of classical background such as representations and expansions of solutions, solutions of special type like rational and special transcendental solutions, Bäcklund transformations and higher order analogues, treated separately for each of these six equations. The final chapter offers a short overview of applications of Painlevé equations, including an introduction to their discrete counterparts. Due to the present important role of Painlevé equations in physical applications, this monograph should be of interest to researchers in both mathematics and physics and to graduate students interested in mathematical physics and the theory of differential equations.