You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since publication of the initial papers in 2006, compressed sensing has captured the imagination of the international signal processing community, and the mathematical foundations are nowadays quite well understood. Parallel to the progress in mathematics, the potential applications of compressed sensing have been explored by many international groups of, in particular, engineers and applied mathematicians, achieving very promising advances in various areas such as communication theory, imaging sciences, optics, radar technology, sensor networks, or tomography. Since many applications have reached a mature state, the research center MATHEON in Berlin focusing on "Mathematics for Key Technolo...
This book addresses the basic concepts of continuum mechanics, that is, the classical field theory of deformable bodies. The theory is systematically developed, from the kinematics to the balance equations, the material theory, and the entropy principles. In turn, the linear-elastic solids, the ideal liquid and the Newtonian liquid are presented in detail as concrete applications. The book concludes by covering the theory of small motions in a medium with a finite prestress. In general, the emphasis is on presenting the content in a clear and straightforward way that requires only an elementary grasp of calculus, linear algebra, and Newtonian mechanics. The book is intended for students of physics, mechanics, engineering and the geosciences, as well as applied mathematics, with a year or more of college calculus behind them.
Mesh adaptation methods can have a profound impact on the numerical solution of partial differential equations. If devised and implemented properly, adaptation significantly reduces the size of the algebraic systems resulting from the discretization, while ensuring that applicable error tolerances are met. In this monograph, drawing from many years of experience, the authors give a comprehensive presentation of metric-based anisotropic hp-mesh adaptation methods. A large part of this monograph is devoted to the derivation of computable interpolation error estimates on simplicial meshes, which take into account the geometry of mesh elements as well as the anisotropic features of the interpola...
A diverse selection of data science topics explored through a mathematical lens.
The contributions contained in the volume, written by leading experts in their respective fields, are expanded versions of talks given at the INDAM Workshop "Anomalies in Partial Differential Equations" held in September 2019 at the Istituto Nazionale di Alta Matematica, Dipartimento di Matematica "Guido Castelnuovo", Università di Roma "La Sapienza". The volume contains results for well-posedness and local solvability for linear models with low regular coefficients. Moreover, nonlinear dispersive models (damped waves, p-evolution models) are discussed from the point of view of critical exponents, blow-up phenomena or decay estimates for Sobolev solutions. Some contributions are devoted to models from applications as traffic flows, Einstein-Euler systems or stochastic PDEs as well. Finally, several contributions from Harmonic and Time-Frequency Analysis, in which the authors are interested in the action of localizing operators or the description of wave front sets, complete the volume.
Recent years have witnessed a growth of interest in the special functions called ridge functions. These functions appear in various fields and under various guises. They appear in partial differential equations (where they are called plane waves), in computerized tomography, and in statistics. Ridge functions are also the underpinnings of many central models in neural network theory. In this book various approximation theoretic properties of ridge functions are described. This book also describes properties of generalized ridge functions, and their relation to linear superpositions and Kolmogorov's famous superposition theorem. In the final part of the book, a single and two hidden layer neu...
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
This book introduces a class of alignment models based on the so-called Cucker-Smale system as well as its kinetic and hydrodynamic counterparts. Cutting edge research in the area of collective behavior is presented, including emerging techniques from fluid mechanics, fractional analysis, and kinetic theory. Analytical aspects are highlighted throughout, such as regularity theory and long time behavior of solutions. Featuring open problems, readers will be motivated to apply these breakthrough methods to future research. The chapters offer an overview of state of the art research with introductions to core concepts. Chapter One introduces the central focus of the book: The agent-based Cucker...
This book investigates the close relation between quite sophisticated function spaces, the regularity of solutions of partial differential equations (PDEs) in these spaces and the link with the numerical solution of such PDEs. It consists of three parts. Part I, the introduction, provides a quick guide to function spaces and the general concepts needed. Part II is the heart of the monograph and deals with the regularity of solutions in Besov and fractional Sobolev spaces. In particular, it studies regularity estimates of PDEs of elliptic, parabolic and hyperbolic type on non smooth domains. Linear as well as nonlinear equations are considered and special attention is paid to PDEs of paraboli...