Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Remarkable Providences
  • Language: en
  • Pages: 500

Remarkable Providences

  • Type: Book
  • -
  • Published: 1991-06-18
  • -
  • Publisher: UPNE

This revised collection of documents provides a large and colorful slice of colonial life between 1608 and 1767, newly augmented with documents on the southern colonies, African Americans, and women.

Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations
  • Language: en
  • Pages: 544

Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations

In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is ex...

The Projective Heat Map
  • Language: en
  • Pages: 210

The Projective Heat Map

This book introduces a simple dynamical model for a planar heat map that is invariant under projective transformations. The map is defined by iterating a polygon map, where one starts with a finite planar -gon and produces a new -gon by a prescribed geometric construction. One of the appeals of the topic of this book is the simplicity of the construction that yet leads to deep and far reaching mathematics. To construct the projective heat map, the author modifies the classical affine invariant midpoint map, which takes a polygon to a new polygon whose vertices are the midpoints of the original. The author provides useful background which makes this book accessible to a beginning graduate student or advanced undergraduate as well as researchers approaching this subject from other fields of specialty. The book includes many illustrations, and there is also a companion computer program.

K-R
  • Language: en
  • Pages: 676

K-R

  • Type: Book
  • -
  • Published: 1861
  • -
  • Publisher: Unknown

None

Kolmogorov Complexity and Algorithmic Randomness
  • Language: en
  • Pages: 511

Kolmogorov Complexity and Algorithmic Randomness

Looking at a sequence of zeros and ones, we often feel that it is not random, that is, it is not plausible as an outcome of fair coin tossing. Why? The answer is provided by algorithmic information theory: because the sequence is compressible, that is, it has small complexity or, equivalently, can be produced by a short program. This idea, going back to Solomonoff, Kolmogorov, Chaitin, Levin, and others, is now the starting point of algorithmic information theory. The first part of this book is a textbook-style exposition of the basic notions of complexity and randomness; the second part covers some recent work done by participants of the “Kolmogorov seminar” in Moscow (started by Kolmogorov himself in the 1980s) and their colleagues. This book contains numerous exercises (embedded in the text) that will help readers to grasp the material.

Foundations of Arithmetic Differential Geometry
  • Language: en
  • Pages: 357

Foundations of Arithmetic Differential Geometry

The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

Homotopy of Operads and Grothendieck-Teichmuller Groups
  • Language: en
  • Pages: 581

Homotopy of Operads and Grothendieck-Teichmuller Groups

The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint o...

A Genealogical Dictionary of the First Settlers of New England: K-R
  • Language: en
  • Pages: 688

A Genealogical Dictionary of the First Settlers of New England: K-R

  • Type: Book
  • -
  • Published: 1861
  • -
  • Publisher: Unknown

None

Sugawara Operators for Classical Lie Algebras
  • Language: en
  • Pages: 321

Sugawara Operators for Classical Lie Algebras

The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical -algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connects the Sugawara operators with the classical -algebras, which play the role of the Weyl group invariants in the finite-dimensional theory.

Hilbert Schemes of Points and Infinite Dimensional Lie Algebras
  • Language: en
  • Pages: 351

Hilbert Schemes of Points and Infinite Dimensional Lie Algebras

Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes of collections of points (zero-dimensional subschemes) in a smooth algebraic surface . Schemes turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others. This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and present...