You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Building up gradually from first principles, this unique introduction to modern thermodynamics integrates classical, statistical and molecular approaches and is especially designed to support students studying chemical and biochemical engineering. In addition to covering traditional problems in engineering thermodynamics in the context of biology and materials chemistry, students are also introduced to the thermodynamics of DNA, proteins, polymers and surfaces. It includes over 80 detailed worked examples, covering a broad range of scenarios such as fuel cell efficiency, DNA/protein binding, semiconductor manufacturing and polymer foaming, emphasizing the practical real-world applications of thermodynamic principles; more than 300 carefully tailored homework problems, designed to stretch and extend students' understanding of key topics, accompanied by an online solution manual for instructors; and all the necessary mathematical background, plus resources summarizing commonly used symbols, useful equations of state, microscopic balances for open systems, and links to useful online tools and datasets.
This book consists of two strongly interweaved parts: the mathematical theory of stochastic processes and its applications to molecular theories of polymeric fluids. The comprehensive mathematical background provided in the first section will be equally useful in many other branches of engineering and the natural sciences. The second part provides readers with a more direct understanding of polymer dynamics, allowing them to identify exactly solvable models more easily, and to develop efficient computer simulation algorithms in a straightforward manner. In view of the examples and applications to problems taken from the front line of science, this volume may be used both as a basic textbook or as a reference book. Program examples written in FORTRAN are available via ftp from ftp.springer.de/pub/chemistry/polysim/.
Rheology is the study of the flow of matter. It is an important and active field of research that spans numerous disciplines and technological applications. The aim of this work is to provide an introduction to the theory and practice of microrheology, a relatively new area of rheology.
Transport Phenomena has been revised to include deeper and more extensive coverage of heat transfer, enlarged discussion of dimensional analysis, a new chapter on flow of polymers, systematic discussions of convective momentum,and energy. Topics also include mass transport, momentum transport and energy transport, which are presented at three different scales: molecular, microscopic and macroscopic. If this is your first look at Transport Phenomena you'll quickly learn that its balanced introduction to the subject of transport phenomena is the foundation of its long-standing success.
More than 900 authors from over 35 countries contributed to the 1992 International Congress on Rheology. These proceedings volumes comprise 17 plenary and keynote papers, 250 oral contributions and some 200 poster presentations. All relevant aspects of rheology are covered, e.g., theoretical rheology, molecular theories, fluid mechanics, rheometry, experimental methods, foams, polymer solutions, polymer melts, rubber, solids, composites, biorheology, industrial rheology, polymer processing, food rheology and electrorheology, reflecting the development of rheology into a broad, multidisciplinary field of recognized academic and industrial relevance.
None
Includes subject section, name section, and 1968-1970, technical reports.