You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nonlinear science is by now a well established field of research at the interface of many traditional disciplines and draws on the theoretical concepts developed in physics and mathematics. The present volume gathers the contributions of leading scientists to give the state of the art in many areas strongly influenced by nonlinear research, such as superconduction, optics, lattice dynamics, biology and biomolecular dynamics. While this volume is primarily intended for researchers working in the field care, has been taken that it will also be of benefit to graduate students or nonexpert scientist wishing to familiarize themselves with the current status of research.
This conference was the third meeting organized in the framework of the European LOCNET project. The main topics discussed by this international research collaboration were localization by nonlinearity and spatial discreteness, and energy transfer (in crystals, biomolecules and Josephson arrays).
With contributions by numerous experts
This interesting volume focuses on the second of the two broad categories into which problems of physical sciences fall-direct (or forward) and inverse (or backward) problems. It emphasizes one-dimensional problems because of their mathematical clarity. The unique feature of the monograph is its rigorous presentation of inverse problems (from quantum scattering to vibrational systems), transmission lines, and imaging sciences in a single volume. It includes exhaustive discussions on spectral function, inverse scattering integral equations of Gel'fand-Levitan and Marcenko, Povzner-Levitan and Levin transforms, Møller wave operators and Krein's functionals, S-matrix and scattering data, and i...
Proceedings of the NATO Advanced Research Workshop, Leuven, Belgium, September 18-22, 1989
This volume contains the Proceedings of the NATO Advanced Research Workshop (ARW) and Emil-Warburg-Symposium (EWS) "Nonlinear Coherent Structures in Phy sics and Biology" held at the University of Bayreuth from June 1 -4, 1993. Director of the ARW was K. H. Spatschek, while F.G. Mertens acted as the co-director, host, and organizer of the EWS. The other members of the scientific organizing committee were A.R. Bishop (Los Alamos), J.C. Eilbeck (Edinburgh), and M. Remoissenet (Dijon). This was the eighth meeting in a series of interdisciplinary workshops founded by our French colleagues who had organized all the previous workshops, e.g. 1989 in Montpel lier and 1991 in Dijon. We were asked to organize the meeting this time in Germany. Of course, we wanted to keep the character defined by the previous meetings, which were always characterized by an open and friendly atmosphere, being not too large in quantity, but high in quality. This time altogether 103 participants attended the workshop. During the past years most of the participants met several times and discussed problems connected with the generation of nonlinear coherent structures in physics and biology.
Spectral Transform and Solitons
This textbook is an introduction to the theory of solitons in the physical sciences.
Nonl inear ideas of a "sol iton" variety have been a unifying influence on the na tura 1 sci ences for many decades. HO~/ever, thei r uni versa 1 a pprec i at i on in the physics community as a genuine paradigm is very much a current develop ment. All of us who have been associated with this recent wave of enthusiasm were impressed with the variety of applications, their inevitability once the mental contraint of linear normal modes is removed, and above all by the common mathematical structures underpinning applications with quite different (and often novel) physical manifestations. This has certainly been the situ ation in condensed matter, and when, during the Paris Lattice Dynamics Con f...
This book presents a careful selection of the most important developments of the \phi^4 model, offering a judicious summary of this model with a view to future prospects and the challenges ahead. Over the past four decades, the \phi^4 model has been the basis for a broad array of developments in the physics and mathematics of nonlinear waves. From kinks to breathers, from continuum media to discrete lattices, from collisions of solitary waves to spectral properties, and from deterministic to stochastic models of \phi^4 (and \phi^6, \phi^8, \phi^12 variants more recently), this dynamical model has served as an excellent test bed for formulating and testing the ideas of nonlinear science and solitary waves.