You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This two-volume book is devoted to mathematical theory, numerics and applications of hyperbolic problems. Hyperbolic problems have not only a long history but also extremely rich physical background. The development is highly stimulated by their applications to Physics, Biology, and Engineering Sciences; in particular, by the design of effective numerical algorithms. Due to recent rapid development of computers, more and more scientists use hyperbolic partial differential equations and related evolutionary equations as basic tools when proposing new mathematical models of various phenomena and related numerical algorithms.This book contains 80 original research and review papers which are written by leading researchers and promising young scientists, which cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ';Hyperbolic Partial Differential Equations';. It is aimed at mathematicians, researchers in applied sciences and graduate students.
The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.
The International Conference on Hyperbolic Problems: Theory, Numerics and Applications, 'HYP2008', was held at the University of Maryland from June 9-13, 2008. This book, the first in a two-part volume, contains nineteen papers based on plenary and invited talks presented at the conference.
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields.
The International Conference on Hyperbolic Problems: Theory, Numerics and Applications, ``HYP2008'', was held at the University of Maryland from June 9-13, 2008. This was the twelfth meeting in the bi-annual international series of HYP conferences which originated in 1986 at Saint-Etienne, France, and over the last twenty years has become one of the highest quality and most successful conference series in Applied Mathematics. This book, the second in a two-part volume, contains more than sixty articles based on contributed talks given at the conference. The articles are written by leading researchers as well as promising young scientists and cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ``hyperbolic PDEs''. This volume will bring readers to the forefront of research in this most active and important area in applied mathematics.
Numerical Analysis explains why numerical computations work or fail. These are mathematical questions, and the text provides students with a complete and sound presentation of the interface between mathematics and scienctific computation.
This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications. This biennial series of conferences has become one of the most important international events in Applied Mathematics. As computers became more and more powerful, the interplay between theory, modeling, and numerical algorithms gained considerable impact, and the scope of HYP conferences expanded accordingly.
In this paper, the authors show the existence of the first non trivial family of classical global solutions of the inviscid surface quasi-geostrophic equation.
The quantum groups of finite and affine type $A$ admit geometric realizations in terms of partial flag varieties of finite and affine type $A$. Recently, the quantum group associated to partial flag varieties of finite type $B/C$ is shown to be a coideal subalgebra of the quantum group of finite type $A$.
This is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of “optimal transportation” (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection the...