You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Covers several research fields dealing with transport. This work covers three main topics including road traffic, granular matter, and biological transport. It considers different points of views including modelling, simulations, experiments, and phenomenological observations.
This book gathers contributions on a variety of flowing collective systems. While primarily focusing on pedestrian dynamics, it also reflects the latest developments in areas such as vehicular traffic and granular flows and addresses related emerging topics such as self-propelled particles, data transport, swarm behaviour, intercellular transport, and individual interactions to complex systems. Combining fundamental research and practical applications in the various fields discussed, the book offers a valuable asset for researchers and professionals in areas such as civil and transportation engineering, mechanical engineering, electrical engineering, physics, computer science, and mathematics.
Optimal Control and Dynamic Games has been edited to honor the outstanding contributions of Professor Suresh Sethi in the fields of Applied Optimal Control. Professor Sethi is internationally one of the foremost experts in this field. He is, among others, co-author of the popular textbook "Sethi and Thompson: Optimal Control Theory: Applications to Management Science and Economics". The book consists of a collection of essays by some of the best known scientists in the field, covering diverse aspects of applications of optimal control and dynamic games to problems in Finance, Management Science, Economics, and Operations Research. In doing so, it provides both a state-of-the-art overview over recent developments in the field, and a reference work covering the wide variety of contemporary questions that can be addressed with optimal control tools, and demonstrates the fruitfulness of the methodology.
This thesis presents the foundations, the initial state, and the progress made in modelling and implementing a real-world and real-time online microscopic traffic simulation system for highway traffic. To successfully model and implement such a simulation system, this thesis recommends the use of a number of formal methods applied at the right places. As part of the recommendation, this thesis proposes a microscopic traffic simulation system. To explore the feasibility and the potential of the recommended methods, it observes and examines the proposed system from multiple views and under various different aspects. As part of the examination, this thesis provides a (semi-)formal specification...
This book presents 57 peer-reviewed papers from the 12th Conference on Traffic and Granular Flow (TGF) held in Washington, DC, in July 2017. It offers a unique synthesis of the latest scientific findings made by researchers from different countries, institutions and disciplines. The research fields covered range from physics, computer science and engineering and they may be all grouped under the topic of "Traffic and Granular Flow". The main theme of the Conference was: "From Molecular Interactions to Internet of Things and Smart Cities: The Role of Technology in the Understanding and the Evolution of Particle Dynamics".
Michal Markiewicz presents the outcomes of his research regarding the influence of dynamic route guidance system on overall emission of carbon dioxide from road transport in rural areas. Sustainable transportation in smart cities is a big challenge of our time, but before electric vehicles replace vehicles that burn fossil fuels we have to think about traffic optimization methods that reduce the amount of greenhouse gas emissions.
This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena. The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.
The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinary research, exchange ideas, and meet many experts in these areas of research.
This book gathers contributions on a variety of flowing collective systems. While primarily focusing on pedestrian dynamics, they also reflect the latest developments in areas such as vehicular traffic and granular flows and address related emerging topics such as self-propelled particles, data transport, swarm behavior, intercellular transport, and collective dynamics of biological systems. Combining fundamental research and practical applications in the various fields discussed, the book offers a valuable asset for researchers and practitioners alike.
This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike, and addresses the latest developments at the intersection of physics, engineering and computational science. These involve complex systems, in which multiple simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena. The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic; granular matter; biological transport; transport networks; data acquisition; data analysis and technological applications. Different perspectives, i.e., modeling, simulations, experiments, and phenomenological observations are considered.