You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician, F. I. Karpelevich (1927-2000). Of particular interest are the survey articles by Sawyer on the Abel transform on noncompact Riemannian symmetric spaces, and by Anker and Ostellari on estimates for heat kernels on such spaces, as well as thearticle by Bernstein and Gindikin on integral geometry for families of curves. There are also many research papers on topics of current interest. The book is suitable for graduate students and research mathematicians interested in harmonic analysis and representation theory.
* Presents extensive surveys by van den Ban, Schlichtkrull, and Delorme of the recent progress in deriving the Plancherel theorem on reductive symmetric spaces * Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, possibly even mathematical cosmology * Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required
A conference on Harmonic Analysis on Reductive Groups was held at Bowdoin College in Brunswick, Maine from July 31 to August 11, 1989. The stated goal of the conference was to explore recent advances in harmonic analysis on both real and p-adic groups. It was the first conference since the AMS Summer Sym posium on Harmonic Analysis on Homogeneous Spaces, held at Williamstown, Massachusetts in 1972, to cover local harmonic analysis on reductive groups in such detail and to such an extent. While the Williamstown conference was longer (three weeks) and somewhat broader (nilpotent groups, solvable groups, as well as semisimple and reductive groups), the structure and timeliness of the two meetin...
This volume is comprised of two parts: the first contains articles by S. N. Evans, F. Ledrappier, and Figa-Talomanaca. These articles arose from a Centre de Recherches de Mathematiques (CRM) seminar entitiled, ``Topics in Probability on Lie Groups: Boundary Theory''. Evans gives a synthesis of his pre-1992 work on Gaussian measures on vector spaces over a local field. Ledrappier uses the freegroup on $d$ generators as a paradigm for results on the asymptotic properties of random walks and harmonic measures on the Martin boundary. These articles are followed by a case study by Figa-Talamanca using Gelfand pairs to study a diffusion on a compact ultrametric space. The second part of the book i...
This book illustrates the wide range of research subjects developed by the Italian research group in harmonic analysis, originally started by Alessandro Figà-Talamanca, to whom it is dedicated in the occasion of his retirement. In particular, it outlines some of the impressive ramifications of the mathematical developments that began when Figà-Talamanca brought the study of harmonic analysis to Italy; the research group that he nurtured has now expanded to cover many areas. Therefore the book is addressed not only to experts in harmonic analysis, summability of Fourier series and singular integrals, but also in potential theory, symmetric spaces, analysis and partial differential equations on Riemannian manifolds, analysis on graphs, trees, buildings and discrete groups, Lie groups and Lie algebras, and even in far-reaching applications as for instance cellular automata and signal processing (low-discrepancy sampling, Gaussian noise).
This volume consists of invited lecture notes, survey papers and original research papers from the AAGADE school and conference held in Będlewo, Poland in September 2015. The contributions provide an overview of the current level of interaction between algebra, geometry and analysis and demonstrate the manifold aspects of the theory of ordinary and partial differential equations, while also pointing out the highly fruitful interrelations between those aspects. These interactions continue to yield new developments, not only in the theory of differential equations but also in several related areas of mathematics and physics such as differential geometry, representation theory, number theory a...
The aim of this volume is to bring together research ideas from various fields of mathematics which utilize the heat kernel or heat kernel techniques in their research. The intention of this collection of papers is to broaden productive communication across mathematical sub-disciplines and to provide a vehicle which would allow experts in one field to initiate research with individuals in another field, as well as to give non-experts a resource which can facilitate expanding theirresearch and connecting with others.
This book constitutes the refereed proceedings of the Second International Conference on Geometric Science of Information, GSI 2015, held in Palaiseau, France, in October 2015. The 80 full papers presented were carefully reviewed and selected from 110 submissions and are organized into the following thematic sessions: Dimension reduction on Riemannian manifolds; optimal transport; optimal transport and applications in imagery/statistics; shape space and diffeomorphic mappings; random geometry/homology; Hessian information geometry; topological forms and Information; information geometry optimization; information geometry in image analysis; divergence geometry; optimization on manifold; Lie groups and geometric mechanics/thermodynamics; computational information geometry; Lie groups: novel statistical and computational frontiers; geometry of time series and linear dynamical systems; and Bayesian and information geometry for inverse problems.