You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Retaining the first edition's technology-centred perspective, this book gives readers a sound understanding of packed-switched, circuit-switched and ATM networks, and techniques for controlling them.
The Workshop on the Economics of Information Security (WEIS) is the leading forum for interdisciplinary research and scholarship on information security and privacy, combining ideas, techniques, and expertise from the fields of economics, social science, business, law, policy, and computer science. In 2009, WEIS was held in London, at UCL, a constituent college of the University of London. Economics of Information Security and Privacy includes chapters presented at WEIS 2009, having been carefully reviewed by a program committee composed of leading researchers. Topics covered include identity theft, modeling uncertainty's effects, future directions in the economics of information security, economics of privacy, options, misaligned incentives in systems, cyber-insurance, and modeling security dynamics. Economics of Information Security and Privacy is designed for managers, policy makers, and researchers working in the related fields of economics of information security. Advanced-level students focusing on computer science, business management and economics will find this book valuable as a reference.
Addresses the major issues involved in computer design and architectures. Dealing primarily with theory, tools, and techniques as related to advanced computer systems, it provides tutorials and surveys and relates new important research results. Each chapter provides background information, describes and analyzes important work done in the field, and provides important direction to the reader on future work and further readings. The topics covered include hierarchical design schemes, parallel and distributed modeling and simulation, parallel simulation tools and techniques, theoretical models for formal and performance modeling, and performance evaluation techniques.
Provides a modern mathematical approach to the design of communication networks for graduate students, blending control, optimization, and stochastic network theories. A broad range of performance analysis tools are discussed, including important advanced topics that have been made accessible to students for the first time. Taking a top-down approach to network protocol design, the authors begin with the deterministic model and progress to more sophisticated models. Network algorithms and protocols are tied closely to the theory, illustrating the practical engineering applications of each topic. The background behind the mathematical analyses is given before the formal proofs and is supported by worked examples, enabling students to understand the big picture before going into the detailed theory. End-of-chapter problems cover a range of difficulties, with complex problems broken into several parts, and hints to many problems are provided to guide students. Full solutions are available online for instructors.
This book makes the argument that performance modeling and simulation have become central issues in computer science and engineering, in part due to applications to the structures comprising the Internet. Dealing primarily with theory, tools and techniques as related to communications systems, the volume provides tutorials and surveys and relates new important research results. Each chapter presents background information, describes and analyzes important work done in the field and provides direction to the reader on future work and further readings. The topics covered include traffic models for A TM networks, simulation environments, analytical methods, interprocessor communications, and an evaluation of process architectures.
This book results from many years of teaching an upper division course on communication networks in the EECS department at the University of California, Berkeley. It is motivated by the perceived need for an easily accessible textbook that puts emphasis on the core concepts behind current and next generation networks. After an overview of how today's Internet works and a discussion of the main principles behind its architecture, we discuss the key ideas behind Ethernet, WiFi networks, routing, internetworking, and TCP. To make the book as self-contained as possible, brief discussions of probability and Markov chain concepts are included in the appendices. This is followed by a brief discussi...
With the fast development of networking and software technologies, information processing infrastructure and applications have been growing at an impressive rate in both size and complexity, to such a degree that the design and development of high performance and scalable data processing systems and networks have become an ever-challenging issue. As a result, the use of performance modeling and m- surementtechniquesas a critical step in designand developmenthas becomea c- mon practice. Research and developmenton methodologyand tools of performance modeling and performance engineering have gained further importance in order to improve the performance and scalability of these systems. Since th...
This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are provided to illustrate the cost of approaching optimality. This theory is also applicable to problems in...
This revised textbook motivates and illustrates the techniques of applied probability by applications in electrical engineering and computer science (EECS). The author presents information processing and communication systems that use algorithms based on probabilistic models and techniques, including web searches, digital links, speech recognition, GPS, route planning, recommendation systems, classification, and estimation. He then explains how these applications work and, along the way, provides the readers with the understanding of the key concepts and methods of applied probability. Python labs enable the readers to experiment and consolidate their understanding. The book includes homework, solutions, and Jupyter notebooks. This edition includes new topics such as Boosting, Multi-armed bandits, statistical tests, social networks, queuing networks, and neural networks. For ancillaries related to this book, including examples of Python demos and also Python labs used in Berkeley, please email Mary James at mary.james@springer.com. This is an open access book.
This book concerns peer-to-peer applications and mechanisms operating on the Internet, particularly those that are not fully automated and involve significant human interaction. So, the realm of interest is the intersection of distributed systems and online social networking. Generally, simple models are described to clarify the ideas. Beginning with short overviews of caching, graph theory and game theory, we cover the basic ideas of structured and unstructured search. We then describe a simple framework for reputations and for iterated referrals and consensus. This framework is applied to a problem of sybil identity management. The fundamental result for iterated Byzantine consensus for a ...