You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The First Book Centered on Materials Issues of SOFCsAlthough the high operating temperature of solid oxide fuel cells (SOFCs) creates opportunities for using a variety of fuels, including low-grade hydrogen and those derived from biomass, it also produces difficulties in materials performance and often leads to materials degradation during operatio
In this handbook and ready reference, editors and authors from academia and industry share their in-depth knowledge of known and novel materials, devices and technologies with the reader. The result is a comprehensive overview of electrochemical energy and conversion methods, including batteries, fuel cells, supercapacitors, hydrogen generation and storage as well as solar energy conversion. Each chapter addresses electrochemical processes, materials, components, degradation mechanisms, device assembly and manufacturing, while also discussing the challenges and perspectives for each energy storage device in question. In addition, two introductory chapters acquaint readers with the fundamentals of energy storage and conversion, and with the general engineering aspects of electrochemical devices. With its uniformly structured, self-contained chapters, this is ideal reading for entrants to the field as well as experienced researchers.
This volume contains 40 papers from the following 10 Materials Science and Technology (MS&T'14) symposia: Rustum Roy Memorial Symposium: Processing and Performance of Materials Using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, and Mechanical Work Advances in Dielectric Materials and Electronic Devices Innovative Processing and Synthesis of Ceramics, Glasses and Composites Advances in Ceramic Matrix Composites Sintering and Related Powder Processing Science and Technology Advanced Materials for Harsh Environments Thermal Protection Materials and Systems Advanced Solution Based Processing for Ceramic Materials Controlled Synthesis, Processing, and Applications of Structure and Functional Nanomaterials Surface Protection for Enhanced Materials Performance
This symposium aims to explore the current state of the art in control of industrial processes in the field of extraction and processing of metals and materials. New sensor technologies, more advanced real-time models, and faster computers are enabling better control systems for these processes. Specific topics include but are not limited to: (1) novel sensors for hostile-environment materials processes, such as online inclusion detection, temperature, and velocity in molten materials, surface condition of hot moving products, etc.; (2) innovative online sampling and analysis techniques, (3) models for real-time process control and quality monitoring systems; (4) process automation, scheduli...
The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues relate
Materials: Engineering, Science, Processing and Design, Second Edition, was developed to guide material selection and understanding for a wide spectrum of engineering courses. The approach is systematic, leading from design requirements to a prescription for optimized material choice. This book presents the properties of materials, their origins, and the way they enter engineering design. The book begins by introducing some of the design-limiting properties: physical properties, mechanical properties, and functional properties. It then turns to the materials themselves, covering the families, the classes, and the members. It identifies six broad families of materials for design: metals, cera...
In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then, Electrochemical Impedance Spectroscopy, time domain measurements and the Distribution function of Relaxation Times are applied to obtain a deep understanding of the relevant loss processes. This procedure yields a notable surplus of information about the electrode contributions to the overall internal resistance of the cell.