Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Annual Report 2018/ Institute for Pulsed Power and Microwave Technology / Institut für Hochleistungsimpuls- und Mikrowellentechnik. (KIT Scientific Reports ; 7758)
  • Language: en
  • Pages: 60

Annual Report 2018/ Institute for Pulsed Power and Microwave Technology / Institut für Hochleistungsimpuls- und Mikrowellentechnik. (KIT Scientific Reports ; 7758)

Das Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM) forscht auf den Gebieten der gepulsten Leistung und der Hochleistungsmikrowellentechnologie. Die Anwendungen für Impulsstromtechnologien reichen von der Materialbearbeitung bis zur Bioelektrik. Hochleistungsmikrowellentechnologien konzentrieren sich auf HF-Quellen (Gyrotrons) für die Elektronenzyklotronresonanzheizung von magnetisch eingeschlossenen Plasmen und auf Anwendungen für die Materialbearbeitung bei Mikrowellenfrequenzen. - The Institute for Pulsed Power and Microwave Technology (IHM) is doing research in the areas of pulsed power and high-power microwave technologies. Applications for pulsed power technologies are ranging from materials processing to bioelectrics. High power microwave technologies are focusing on RF sources (gyrotrons) for electron cyclotron resonance heating of magnetically confined plasmas and on applications for materials processing at microwave frequencies.

Automated Mode Recovery and Electronic Stability Control for Wendelstein 7-X Gyrotrons
  • Language: en
  • Pages: 272

Automated Mode Recovery and Electronic Stability Control for Wendelstein 7-X Gyrotrons

Magnetic confinement fusion relies on plasma heating and plasma control using gyrotron oscillators providing at megawatt power levels. The operational reliability decreases when operating at the performance limits due to increasing parasitic mode activity. This work demonstrates for the first time the automated, fast recovery of nominal gyrotron operation during a pulse by exploiting the hysteretic gyrotron behaviour after a mode switch being in use at the Wendelstein 7-X ECRH facility.

Time-dependent spectrum analysis of high power gyrotrons
  • Language: en
  • Pages: 316

Time-dependent spectrum analysis of high power gyrotrons

In this work, a novel measurement system for the analysis of the gyrotron RF output spectrum was developed. It enables unprecedented time dependent measurements within a large bandwidth, dynamic range and unambiguous RF indication in the entire D-Band (110-170 GHz). Special attention was given to the investigation of parasitic RF oscillations, and the analysis of the interplay of thermal cavity expansion and ionization-based space charge neutralization at the start of long RF pulses.

Pushing the KIT 2 MW Coaxial-Cavity Short-Pulse Gyrotron Towards a DEMO Relevant Design
  • Language: en
  • Pages: 190

Pushing the KIT 2 MW Coaxial-Cavity Short-Pulse Gyrotron Towards a DEMO Relevant Design

Magnetic fusion is one approach to generate thermonuclear fusion power in an environmental friendly way. The Electron Cyclotron Resonance Heating is considered as the major concept for startup, heating and control of the fusion plasma. Megawatt-class gyrotrons generate the required microwave power. This work focuses on advanced key components and technologies for a DEMO relevant 2 MW gyrotron. One major focus is on the development of advanced Magnetron Injection Guns. Another focus is on the red

Conceptual Studies of Multistage Depressed Collectors for Gyrotrons
  • Language: en
  • Pages: 232
Temperature- and Time-Dependent Dielectric Measurements and Modelling on Curing of Polymer Composites
  • Language: en
  • Pages: 204

Temperature- and Time-Dependent Dielectric Measurements and Modelling on Curing of Polymer Composites

In this book a test set for dielectric measurements at 2.45 GHz during curing of polymer composites is developed. Fast reconstruction is solved using a neural network algorithm. Modeling of the curing process at 2.45 GHz using both dielectric constant and dielectric loss factor results in more accurate model compared to low frequency modelling that only uses the loss factor. Effect of various hardeners and different amount of filler is investigated.

Influence of Emitter Surface Roughness and Emission Inhomogeneity on Efficiency and Stability of High Power Fusion Gyrotrons
  • Language: en
  • Pages: 226

Influence of Emitter Surface Roughness and Emission Inhomogeneity on Efficiency and Stability of High Power Fusion Gyrotrons

The increasing demand for powerful, reliable, and efficient gyrotron oscillators for Electron Cyclotron Resonance Heating (ECRH) in fusion plasma experiments requires a close look at the various factors in gyrotrons that determine gyrotron performance. In this frame, the influence of emitter surface roughness, emission inhomogeneity, and secondary electron generation on gyrotron operation is presented, with focus on Low Frequency Oscillations (LFOs) and Electron Beam Halo (EBH) generation.

Feasibility and Operational Limits for a 236 GHz Hollow-Cavity Gyrotron for DEMO
  • Language: en
  • Pages: 270

Feasibility and Operational Limits for a 236 GHz Hollow-Cavity Gyrotron for DEMO

The DEMOnstration fusion power plant (DEMO) will be the first fusion reactor, which is intended to generate net electrical power. For successful operation of DEMO, high-power gyrotrons with operating frequencies up to 240 GHz are required for plasma heating and stabilization. In this work, a systematic feasibility study and tolerance analysis are performed for the conventional-type hollow-cavity DEMO gyrotrons. The various approaches are also suggested to identify its operational limits.