You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Published a few years after the author's death, this volume is a sequel to his 1964 book, Fast Reactions in Solution; the material is entirely new, extending investigation beyond now well-established fast-reaction techniques to consider their contribution to understanding events on the molecular scale. After an introductory chapter on origins, methods, mechanisms, and rate constants, coverage includes the rates of diffusion-controlled reactions, mathematical theory of diffusion, flash photolysis techniques, fluorescence quenching, Marcus theory involving proton-transfer and group-transfer reactions in solutions, and electron-transfer reactions. Annotation copyrighted by Book News, Inc., Portland, OR.
This book describes the physical and chemical effects of radiation interaction with matter. Beginning with the physical basis for the absorption of charged particle radiations, Fundamentals of Radiation Chemistry provides a systematic account of the formation of products, including the nature and properties of intermediate species. Developed from first principles, the coverage of fundamentals and applications will appeal to an interdisciplinary audience of radiation physicists and radiation biologists. Only an undergraduate background in chemistry and physics is assumed as a prerequisite for the understanding of applications in research and industry. - Provides a working knowledge of radiation effects for students and non-experts - Stresses the role of the electron both as a radiation and as a reactant species - Contains clear diagrams of track models - Includes a chapter on applications - Written by an expert with more than thirty years of experience in a premiere research laboratory - Culled from the author's painstaking research of journals and other publications over several decades
Progress in Physical Organic Chemistry is dedicated to reviewing the latest investigations into organic chemistry that use quantitative and mathematical methods. These reviews help readers understand the importance of individual discoveries and what they mean to the field as a whole. Moreover, the authors, leading experts in their fields, offer unique and thought-provoking perspectives on the current state of the science and its future directions. With so many new findings published in a broad range of journals, Progress in Physical Organic Chemistry fills the need for a central resource that presents, analyzes, and contextualizes the major advances in the field. The articles published in Pr...
During the twentieth century, radiation chemistry emerged as a multi-faceted field encompassing all areas of science. Radiation chemical techniques are becoming increasingly popular and are being routinely used not only by chemists but also by biologists, polymer scientists, etc. "Radiation Chemistry: Present Status and Future Trends" presents an overall view of the different aspects of the subject. The chapters review the current status of the field and present the future opportunities in utilizing radiation chemical techniques. This will be of interest to chemists in general and in particular to radiation chemists, chemical kineticists, photochemists, physical-organic chemists and spectros...
The Chemistry of Ruthenium is concerned with the chemistry of ruthenium, with emphasis on synthesis and structure. The discussion spans a wide range of fields, from coordination chemistry and organometallic chemistry to structural chemistry (of both molecular and extended lattices), electrochemistry and photochemistry, as well as kinetics and spectroscopy. Comprised of 15 chapters, this book begins with an introduction to the discovery and early history of ruthenium, along with its extraction and purification, isotopes, physical and chemical properties, and applications. The discussion then turns to the concept of oxidation state and a scheme for systematizing descriptive inorganic chemistry...
Radiation Effects: ESR and ENDOR Analysis presents an explanation of the biological effects of radiation. The book discusses the characteristics of the electron spin resonance (ESR) and electron-nuclear double resonance (ENDOR) spectra, such as radiation damage and magnetic resonance spectroscopy, g values, hyperfine couplings, and other special effects. The text also describes the radiation effects and damage mechanisms; as well as the free radicals produced in the primary oxidative process initiated by ionizing radiation, in the primary reductive process initiated by ionizing radiation, and via excitation effects. The classification of the mechanisms of radiation damage by various other se...
Inorganic Reactions and Methods systemizes the discipline of modern inorganic chemistry according to a plan constructed by a council of editorial advisors and consults that include three Nobel laureates (E.O. Fischer, H. Taube, and G. Wilkinson). Rather than producing a collection of unrelated review articles, this series creates a framework that reflects the creative potential of this scientific discipline. In a clear, concise, and highly organized manner, it provides an in-depth treatment of bond formation reactions categorized by element type. The series covers all areas of inorganic chemistry including chemistry of the elements, coordination compounds, donor-acceptor adducts, organometallic, polymer and solid-state material, and compounds relevant to bioinorganic chemistry. A unique index system provides users with several fast options for accessing information on forming any bond type, compound, or reaction. Coverage of both classical chemistry and the frontiers of today's research make this series a valuable reference for years to come.
Since biological tissues are unstable in an oxygen atmosphere, a great deal of effort is expended by organisms to metabolically limit or repair oxidative tissue damage. This volume of Methods in Enzymology and its companion Volume 234 present methods developed to investigate the roles of oxygen radicals and antioxidants in disease. Key Features * Generation, detection, and characterization of oxygen radicals, chemistry, biochemistry, and intermediate states of reductio* Isolation, characterization, and assay of enzymes or substrates involved in formation or removal of oxygen radical * Methods for assessing molecular, cell, and tissue damage; assays and repair of oxidative damage