You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Future space missions and deep-sea explorations will require small/micro nuclear reactors (kWe~MWe) for power generation. Compared with conventional energy systems such as storage batteries and fossil energy, nuclear reactors are featured higher energy intensity, higher reliability, and longer lifetime. According to the coolant, the candidate small/micro nuclear reactors include the heat pipe cooled reactor, liquid metal cooled reactor, and gas-cooled reactor, most of which are still in the conceptual design stage with numerical studies and experimental research. These emerging reactors have an entirely different core structure and working principle from the existing light water reactors, which has led to an increasing need for updated simulation methods and experimental studies.
A nuclear reactor operates in an environment where complex multi-physics and multi-scale phenomena exist, and it requires consideration of coupling among neutronics, thermal hydraulics, fuel performance, chemical dynamics, and coupling between the reactor core and first circuit. Safe, reliable, and economical operation can be achieved by leveraging high-fidelity numerical simulation, and proper considerations for coupling among different physics and required to provide powerful numerical simulation tools. In the past simplistic models for some of the physics phenomena are used, with the recent development of advanced numerical methods, software design, and high-performance computing power, the appeal of multi-physics and multi-scale modeling and simulation has been broadened.
Nuclear Power Reactor Designs: From History to Advances analyzes nuclear designs throughout history and explains how each of those has helped to shape and inform the nuclear reactor designs of today and the future. Focused on the structure, systems and relevant components of each reactor design, this book provides the readers with answers to key questions to help them understand the benefits of each design. Each reactor design is introduced, their origin defined, and the relevant research presented before an analysis of its successes, what was learned, and how research and technology advanced as a result are presented. Students, researchers and early career engineers will gain a solid understanding of how nuclear designs have evolved, and how they will continue to develop in the future. - Presents reactor designs through history to present day, focusing on key structures, systems and components - Provides readers with quick answers about various design principles and rationales - Includes new approaches such as the micro-reactor and small-modular reactors