You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key FeaturesMake a hands-on start in the fields of Big Data, Distributed Technologies and Machine LearningLearn how to design, develop and interpret the results of common Machine Learning algorithmsUncover hidden patterns in your data in order to derive real actionable insights and business valueBook Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used...
A practical guide for solving complex data processing challenges by applying the best optimizations techniques in Apache Spark. Key FeaturesLearn about the core concepts and the latest developments in Apache SparkMaster writing efficient big data applications with Spark’s built-in modules for SQL, Streaming, Machine Learning and Graph analysisGet introduced to a variety of optimizations based on the actual experienceBook Description Apache Spark is a flexible framework that allows processing of batch and real-time data. Its unified engine has made it quite popular for big data use cases. This book will help you to get started with Apache Spark 2.0 and write big data applications for a vari...
Speed up the design and implementation of deep learning solutions using Apache Spark Key FeaturesExplore the world of distributed deep learning with Apache SparkTrain neural networks with deep learning libraries such as BigDL and TensorFlowDevelop Spark deep learning applications to intelligently handle large and complex datasetsBook Description Deep learning is a subset of machine learning where datasets with several layers of complexity can be processed. Hands-On Deep Learning with Apache Spark addresses the sheer complexity of technical and analytical parts and the speed at which deep learning solutions can be implemented on Apache Spark. The book starts with the fundamentals of Apache Sp...
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
‘Homegardens’ are integrated tree–crop–animal production systems, often established on small parcels of land surrounding homesteads, and primarily found in tropical environments. This multi-authored volume contains peer-reviewed chapters from the world’s leading researchers and professionals in this topic. It summarizes the current state of knowledge on homegarden systems, with a view to using this knowledge as a basis for improving both homegardens and other similar multistrata agroforestry systems.
Sustainable agriculture is a rapidly growing field aiming at producing food and energy in a sustainable way for humans and their children. Sustainable agriculture is a discipline that addresses current issues such as climate change, increasing food and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil erosion, fertility loss, pest control, and biodiversity depletion. Novel, environmentally-friendly solutions are proposed based on integrated knowledge from sciences as diverse as agronomy, soil science, molecular biology, chemistry, toxicology, ecology, economy, and social sciences. Indeed, sustainable agriculture decipher mechanisms of processes that occur from t...
With reference to Bangladesh.