You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book includes the proceedings of the Responsible Engineering and Living 2022 Symposium and Industry Summit. Molière holds each of us accountable when he asserted that, “It is not only for what we do that we are held responsible, but also for what we do not do.” Responsible Engineering and Living 2022 (REAL2022) strived to inspire every individual to practise and foster responsible engineering and living. Its proceedings brings all stakeholders, enthusiasts and experts from academia, industry, policy arenas, and general public, together to discuss challenges, sharpen existing solutions, and formulate novel means to advance responsible engineering and living. This symposium disseminates recent progress and promote collaborations to maximize opportunities for innovative solutions. Topics of interest include resource and energy conservation, waste reduction, nature-friendly engineering and architecture, and sustainable vibrant living.
Natural fibre composite is an emerging material that has great potential to be used in engineering application. Oil palm, sugar palm, bagasse, coir, banana stem, hemp, jute, sisal, kenaf, roselle, rice husk, betul nut husk and cocoa pod are among the natural fibres reported to be used as reinforcing materials in polymer composites. Natural fibre composites were used in many industries such as automotive, building, furniture, marine and aerospace industries. The advantages of natural fibre composites include low cost, renewable, abundance, light weight, less abrasive and they are suitable to be used in semi or non-structural engineering components. Research on various aspects of natural fibre...
The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s focus on ending the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion could continue to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels including hydrogen, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. The contributions presented at the International Conference on Powertrain Systems for a Sustainable Future 2023 (London, UK, 29- 30 November 2023) focus on t...
Automotive manufacturers are required to decrease CO2 emissions and increase fuel economy while assuring driver comfort and safety. In recent years, there has been rapid development in the application of lightweight and sustainable materials in the automotive industry to help meet these criteria. This book provides critical reviews and the latest research results of various lightweight and sustainable materials in automotive applications. It discusses current applications and future trends of lightweight materials in the automotive area. While there are a few books published mainly focusing on automotive applications of metallic lightweight materials, to date there is no available book focusing on a broad spectrum of lightweight materials, including metal, plastic, composites, bio-fiber, bio-polymer, carbon fiber, glass fiber, nanomaterials, rubber materials, and foaming materials, as this work does. The book also includes case studies of commercial lightweight automotive parts from sustainable lightweight materials, providing an invaluable resource to those involved in this in-demand research and commercialization area.
For decades, scientists and engineers have been working to increase the efficiency of internal combustion engines. For spark-ignition engines, two technical questions in particular are always in focus: 1. How can the air/fuel mixture be optimally ignited under all possible conditions? 2. How can undesirable but recurrent early and self-ignitions in the air/fuel mixture be avoided? Against the background of the considerable efficiency increases currently being sought in the context of developments and the introduction of new fuels, such as hydrogen, methanol, ammonia and other hydrogen derivatives as well as biofuels, these questions are more in the focus than ever. In order to provide a perfect exchange platform for the community of combustion process and system developers from research and development, IAV has organized this combined conference, chaired by Marc Sens. The proceedings presented here represent the collection of all the topics presented at the event and are thus intended to serve as an inspiration and pool of ideas for all interested parties.
This book presents the key concepts and methods involved in the development of a variety of materials for lightweight constructions, including metals, alloys, polymers and composites. It provides case studies and examples to explain strategies adapted for specific applications of the materials and covers traditional to advanced manufacturing concepts of lightweight materials, including 3D printing. It also illustrates the fundamentals and usability of biodegradable materials for achieving a greener environment, as well as possibilities of green manufacturing. Covers the fundamentals of a range of materials used for lightweight constructions Discusses fabrication and testing of materials Addresses relevant concepts of 3D printing and biodegradable materials Explores analysis of the failure mechanism of materials used in various applications Identifies the applicability of materials to a variety of situations Materials for Lightweight Constructions will suit researchers and graduate students in materials science, mechanical engineering, construction and composites.
Bio-butanol has gained wide recognition globally as an advanced biofuel, which can be used directly as a substitute for gasoline in internal combustion engines. This book provides readers with an in-depth knowledge of the various aspects and steps involved in butanol production. Further, the current global status, history, various technologies adopted for butanol production from different feedstocks, and the role of microorganisms in the production process are also covered. The book has 12 chapters, with each chapter dedicated to covering various aspects of butanol, from production to applications.
Lignin in Polymer Composites presents the latest information on lignin, a natural polymer derived from renewable resources that has great potential as a reinforcement material in composites because it is non-toxic, inexpensive, available in large amounts, and is starting to be deployed in various materials applications due to its advantages over more traditional oil-based materials. This book reviews the state-of-the-art on the topic and their applications to composites, including thermoplastic, thermosets, rubber, foams, bioplastics, nanocomposites, and lignin-based carbon fiber composites. In addition, the book covers critical assessments on the economics of lignin, including a cost-perfor...
The volume includes selected and reviewed papers from the 3rd Conference on Ignition Systems for Gasoline Engines in Berlin in November 2016. Experts from industry and universities discuss in their papers the challenges to ignition systems in providing reliable, precise ignition in the light of a wide spread in mixture quality, high exhaust gas recirculation rates and high cylinder pressures. Classic spark plug ignition as well as alternative ignition systems are assessed, the ignition system being one of the key technologies to further optimizing the gasoline engine.
Advances in Clean Energy: Production and Application supports sustainable clean energy technology and green fuel for clean combustion by reviewing the pros and cons of currently available technologies specifically for biodiesel production from biomass sources, recent fuel modification strategy, low-temperature combustion technology, including other biofuels as well. Written for researchers, graduate students, and professionals in mechanical engineering, chemical engineering, energy, and environmental engineering, this book: Covers global energy scenarios and future energy demands pertaining to clean energy technologies Provides systematic and detailed coverage of the processes and technologies used for biofuel production Includes new technologies and perspectives, giving up-to-date and state-of-the-art information on research and commercialization Discusses all conversion methods including biochemical and thermochemical Examines the environmental consequences of biomass-based biofuel use