You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume details the thermodynamics and kinetics of the adsorption of surfactants and polymers on solids, as well as coagulation and flocculation mechanisms - demonstrating the applicability of the newest theoretical approaches on practical systems.;Written by over 15 international experts in the field, Coagulation and Flocculation: treats the Gouy-Chapman theory of an isolated planar charged surface and the DLVO theory describing the interaction between two identical charged surfaces; shows which energies are responsible for structure formation, what types of structure can be built in diluted and concentrated systems and how such structures can be studied and characterized; describes the interplay between interface and hydrodynamic forces and derives equations for calculating their individual probabilities; examines the use of microscopy, photography, individual particle sensors, sedimentation and light scattering to measure aggregate size distributions; and discusses methods for forming ceramics and the effects of improvements in powder packing and the stabilization of powder suspensions on processing steps.
Reviews a range of fundamental concepts, recent developments and practical applications in dispersion theory, along with relevant insights from colloidal and interfacial science. The text contains new work on the stabilization of solid-liquid dispersions. It focuses on topics as varied as electrostatics, hydrodynamics and rheology.
It is difficult to imagine how our highly evolved technological society would function, or how life would even exist on our planet, if polymers did not exist. The intensive study of polymeric systems, which has been under way for several decades, has recently yielded new insights into the properties of assemblies of these complex molecules and the physical principles that govern their behavior. These developments have included new concepts to describe aspects of the many body behavior in these systems, microscopic analyses that bring our understanding of these systems much closer to our understanding of simple liquids and solids, and the discovery of novel chemistry that these molecules can ...
Proceedings of the NATO Advanced Study Institute on Properties of Colloidal Systems, Aberystwyth, Wales, U.K., September 10-23, 1989
Within this volume is a thorough coverage of the fundamental principles embracing modern theories of colloid chemistry applied to mineral processing. It is written in respect for Dr. J.A. Kitchener, distinguished Reader in the Science of Mineral Processing in the Royal School of Mines, Imperial College, University of London (recently retired). Dr. Kitchener's expertise in colloid chemistry has led to numerous fundamental insights and practical advances in flotation, selective flocculation, and the treatment of slimes. Colloid chemistry is inevitably involved in all aspects of mineral processing, ranging from how collectors selectively adsorb on to mineral surfaces in flotation, to the forces which control the stability of dispersions of submicron particles, as well as embracing the behaviour of hydrolyzed metal ions in solid-water slurries. The intelligent use of this information is essential in the effective design of separation processes and strategies by the mineral processor. Up to date bibliographies are included at the end of each of the 13 chapters making this volume a useful general resource for researchers, students and mineral processors.
Presents a synopsis of the theoretical principles and practical experience concerning the interfacial behaviour of bioproducts. The volume offers an interdisciplinary approach to the subject that highlights the importance of interfacial phenomena in bioprocessing systems, and the tools used to study and interpret the phenomena. It contains coverage ranging from fundamentals of bioproduct and solid surface structure to the interactions of multicomponent mixtures in heterogeneous.
This new edition features research from nearly 60 of the profession's most distinguished international authorities. Recognizing emerging developments in biopolymer systems research with fully updated and expanded chapters, the second edition discusses the biopolymer-based multilayer structures and their application in biosensors, the progress made in the understanding of protein behaviour at the air-water interface, experimental findings in ellipsometry and reflectometry, and recent developments concerning protein interfacial behaviour in microfabricated total analysis systems and microarrays. With over 3000 references, this is an essential reference for professionals and students in surface, pharmaceutical, colloid, polymer, and medicinal chemistry; chemical, formulation, and application engineering; and pharmacy.
Nanomaterial science has received increasing attention over the last twenty years. As more and more applications are discovered in medical sciences, physics, chemistry, polymer science, material science and engineering, there is a growing need for a basic understanding of nanoparticle interactions and their role in the thermodynamic and kinetic stability of nanodispersions. "Nanodispersions: Interactions, Stability and Dynamics" collects research in nanodispersion interactions and stability by the distinguished Eli Ruckenstein and his research group at SUNY-Buffalo. This book provides valuable insight into current investigations of nanotechnology.
This work covers topics ranging from fundamental studies of solubilization to practical technological applications of the phenomenon. It reviews the solubilization of organic materials into surfactant aggregates, including micelles, vesicles and admicelles. The book also details methods of measuring solubilization that utilize both classical and newer instrumental techniques. It is intended for physical, surface, colloid and surfactant chemists; chemical, environmental and civil engineers; and upper-level undergraduate and graduate students in these disciplines.
While currently available titles either focus on the basics or on very specific subtopics, this text meets the need for a comprehensive survey of surfactants and their properties, with a strong emphasis on applications and their correlation to the fundamentals. The author covers their classification, physical properties, phase behavior, adsorption, effects - such as wetting, spreading and adhesion - as well as industrial applications in personal care and cosmetics, pharmaceuticals, agrochemicals and food products. Professor Tadros is a well-known expert on the topic of surfactants, with much experience in colloid science. Here, he uses his industrial experience to close the gap between fundamentals of surfactants and their relevance and applications in practice.