You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In recent years, nanoelectronics has become very interdisciplinary requiring students to master aspects of physics, electrical engineering, chemistry etc. The 2nd edition of this textbook is a comprehensive overview of nanoelectronics covering the necessary quantum mechanical and solid-state physics foundation, an overview of semiconductor fabrication as well as a brief introduction into device simulation using the non-equilibrium Greens function formalism. Equipped with this, the work discusses nanoscale field-effect transistors and alternative device concepts such as Schottky-barrier MOSFETs as well as steep slope transistors based on different materials. In addition, cryogenic operation of MOSFETs for the realization of, e.g., classical control electronics of semiconducting spin qubits is studied. The work contains a number of tasks, examples and exercises with step-by-step video solutions as well as tutorial videos that deepen the understanding of the material. With additional access to simulation tools that allow students to do computational experiments, the emphasis is on thorough explanation of the material enabling students to carry out their own research.
This book offers combined views on silicon-on-insulator (SOI) nanoscaled electronics from experts in the fields of materials science, device physics, electrical characterization and computer simulation. Coverage analyzes prospects of SOI nanoelectronics beyond Moore’s law and explains fundamental limits for CMOS, SOICMOS and single electron technologies.
Final program for the CMOSET 2012 conference
Spintronics, being a part of electronics, is under intense development for about forty years and mainly concerns transport of electronics spin in low-dimensional structures. This field, based on often difficult theoretical concepts of quantum physics, has surprisingly strong and real technological and application consequences. Thus, spintronic solutions concern memory systems, information processing devices and are used as sensors to detect variety of physical fields. The early development of this field can be associated with the names of such scientists as: E. I. Rashba, A. Fert, P. Grünberg, J. Barnaś, B. Hillebrands, G. Güntherodt, I. K. Schuller, M. Grimsditch, A. Hoffman, P. Vavassor...
Ambient Intelligence is one of the new paradigms in the development of information and communication technology, which has attracted much attention over the past years. The aim is the to integrate technology into people environment in such a way that it improves their daily lives in terms of well-being, creativity, and productivity. Ambient Intelligence is a multidisciplinary concept, which heavily builds on a number of fundamental breakthroughs that have been achieved in the development of new hardware concepts over the past years. New insights in nano and micro electronics, packaging and interconnection technology, large-area electronics, energy scavenging devices, wireless sensors, low power electronics and computing platforms enable the realization of the heaven of ambient intelligence by overcoming the hell of physics. Based on contributions from leading technical experts, this book presents a number of key topics on novel hardware developments, thus providing the reader a good insight into the physical basis of ambient intelligence. It also indicates key research challenges that must be addressed in the future.
Fachlich auf höchstem Niveau, visuell überzeugend und durchgängig farbig illustriert: Das ist die neue Auflage der praxisbewährten Einführung in spezialisierte elektronische Materialien und Bauelemente aus der Informationstechnologie. Über ein Drittel des Inhalts ist neu, alle anderen Beiträge wurden gründlich überarbeitet und aktualisiert.
Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, poly...
This book gives a state-of-the-art overview by internationally recognized researchers of the architectures of breakthrough devices required for future intelligent integrated systems. The first section highlights Advanced Silicon-Based CMOS Technologies. New device and functional architectures are reviewed in chapters on Tunneling Field-Effect Transistors and 3-D monolithic Integration, which the alternative materials could possibly use in the future. The way we can augment silicon technologies is illustrated by the co-integration of new types of devices, such as molecular and resistive spintronics-based memories and smart sensors, using nanoscale features co-integrated with silicon CMOS or above it.
Micro and nano devices are an integral part of modern technology. To address the requirements of the state-of-the-art technology, topics are selected from both chip-based and flexible electronics. A wide range of carbon materials including graphene, carbon nanotube, glass-like carbon, porous carbon, carbon black, graphite, carbon nanofiber, laser-patterned carbon and heteroatom containing carbon are covered. This goal is to elucidate fundamental carbon material science along with compatible micro- and nanofabrication techniques. Real-life example of sensors, energy storage and generation devices, MEMS, NEMS and implantable bioelectronics enable visualization of the outcome of described processes. Students will also benefit from the attractive aspects of carbon science explained in simple terms. Hybridization, allotrope classification and microstructural models are presented with a whole new outlook. Discussions on less-studied, hypothetical and undiscovered carbon forms render the contents futuristic and highly appealing.