You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A profusion of research and results on the mechanical behaviour of crystalline solids has followed the discovery of dislocations in the early thirties. This trend has been enhanced by the development of powerful experimental techniques. particularly X ray diffraction. transmission and scanning electron microscopy. microanalysis. The technological advancement has given rise to the study of various and complex materials. not to speak of those recently invented. whose mechanical properties need to be mastered. either for their lise as structural materials. or more simply for detenllining their fonnability processes. As is often the case this fast growth has been diverted both by the burial of e...
Dislocations were introduced into crystal physics, and particularly into the theory of plasticity, in 1934. For many years, they were the field of speculation of a small group of specialists, not considered seriously by real physicists and metallurgists. After W.T. Read Jr's fundamental work in 1953 and further developments by Cottrel, Friedel, Frank and Hirsch, dislocations had become part of the working vocabulary of solid-state physics and metallurgy.
For decades to come, the limits to computing power will not allow atomistic simulations of macroscopic specimens. Simulations can only be performed on various scales (nano, meso, micro and macro) using the input provided by simulations (or data) on the next smaller scale. The resulting hierarchy has been the focus of many seminars and lectures. Necessarily, special emphasis has been placed on mesoscopic simulations, bridging the gaps between nano (atomic) and micro space and time scales. The contributors to Computer Simulation in Materials Science consider both fundamental problems and applications. Papers on the evolution of morphological patterns in phase transformations and plastic deform...
None
None