Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Shock Waves and Reaction—Diffusion Equations
  • Language: en
  • Pages: 650

Shock Waves and Reaction—Diffusion Equations

For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled "Recent Results." This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theo...

Advances in the Theory of Shock Waves
  • Language: en
  • Pages: 527

Advances in the Theory of Shock Waves

In the field known as "the mathematical theory of shock waves," very exciting and unexpected developments have occurred in the last few years. Joel Smoller and Blake Temple have established classes of shock wave solutions to the Einstein Euler equations of general relativity; indeed, the mathematical and physical con sequences of these examples constitute a whole new area of research. The stability theory of "viscous" shock waves has received a new, geometric perspective due to the work of Kevin Zumbrun and collaborators, which offers a spectral approach to systems. Due to the intersection of point and essential spectrum, such an ap proach had for a long time seemed out of reach. The stabili...

Seventh Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Gravitation, And Relativistic Field Theories - Proceedings Of The 7th Marcel Grossmann Meeting (In 2 Parts)
  • Language: en
  • Pages: 2024

Seventh Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Gravitation, And Relativistic Field Theories - Proceedings Of The 7th Marcel Grossmann Meeting (In 2 Parts)

Since 1975, the triennial Marcel Grossmann Meetings have been organized in order to provide opportunities for discussing recent advances in gravitation, general relativity and relativisitic field theories, emphasizing mathematical foundations, physical predictions, and experimental tests.The proceedings of the Seventh Marcel Grossmann Meeting include the invited papers given at the plenary sessions, the summaries of the parallel sessions, the contributed papers presented at the parallel sessions, and the evening public lectures.The authors of these papers discuss many of the recent theoretical, observational, and experimental developments that have significant implications for the fields of physics, cosmology, and relativistic astrophysics.

Partial Differential Equations
  • Language: en
  • Pages: 662

Partial Differential Equations

This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. … Evans' book is evidence of hi...

Numerical Methods for Conservation Laws
  • Language: en
  • Pages: 571

Numerical Methods for Conservation Laws

  • Type: Book
  • -
  • Published: 2018-01-30
  • -
  • Publisher: SIAM

Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms: offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than...

Featured Reviews in Mathematical Reviews 1997-1999
  • Language: en
  • Pages: 762

Featured Reviews in Mathematical Reviews 1997-1999

This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.

Pseudo-Differential Operators with Discontinuous Symbols: Widom's Conjecture
  • Language: en
  • Pages: 116

Pseudo-Differential Operators with Discontinuous Symbols: Widom's Conjecture

Relying on the known two-term quasiclassical asymptotic formula for the trace of the function $f(A)$ of a Wiener-Hopf type operator $A$ in dimension one, in 1982 H. Widom conjectured a multi-dimensional generalization of that formula for a pseudo-differential operator $A$ with a symbol $a(\mathbf{x}, \boldsymbol{\xi})$ having jump discontinuities in both variables. In 1990 he proved the conjecture for the special case when the jump in any of the two variables occurs on a hyperplane. The present paper provides a proof of Widom's Conjecture under the assumption that the symbol has jumps in both variables on arbitrary smooth bounded surfaces.

Hyperbolic Problems
  • Language: en
  • Pages: 793

Hyperbolic Problems

This two-volume book is devoted to mathematical theory, numerics and applications of hyperbolic problems. Hyperbolic problems have not only a long history but also extremely rich physical background. The development is highly stimulated by their applications to Physics, Biology, and Engineering Sciences; in particular, by the design of effective numerical algorithms. Due to recent rapid development of computers, more and more scientists use hyperbolic partial differential equations and related evolutionary equations as basic tools when proposing new mathematical models of various phenomena and related numerical algorithms.This book contains 80 original research and review papers which are written by leading researchers and promising young scientists, which cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of OC Hyperbolic Partial Differential EquationsOCO. It is aimed at mathematicians, researchers in applied sciences and graduate students."

Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits
  • Language: en
  • Pages: 442

Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits

  • Type: Book
  • -
  • Published: 1988-01-01
  • -
  • Publisher: SIAM

None

Practical Analysis in One Variable
  • Language: en
  • Pages: 621

Practical Analysis in One Variable

This text places the basic ideas of real analysis and numerical analysis together in an applied setting that is both accessible and motivational to young students. The essentials of real analysis are presented in the context of a fundamental problem of applied mathematics, which is to approximate the solution of a physical model. The framework of existence, uniqueness, and methods to approximate solutions of model equations is sufficiently broad to introduce and motivate all the basic ideas of real analysis. The book includes background and review material, numerous examples, visualizations and alternate explanations of some key ideas, and a variety of exercises ranging from simple computations to analysis and estimates to computations on a computer.