You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This Handbook gives a comprehensive snapshot of a field at the intersection of mathematics and computer science with applications in physics, engineering and education. Reviews 67 software systems and offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education.
Symbolic rewriting techniques are methods for deriving consequences from systems of equations, and are of great use when investigating the structure of the solutions. Such techniques appear in many important areas of research within computer algebra: • the Knuth-Bendix completion for groups, monoids and general term-rewriting systems, • the Buchberger algorithm for Gröbner bases, • the Ritt-Wu characteristic set method for ordinary differential equations, and • the Riquier-Janet method for partial differential equations. This volume contains invited and contributed papers to the Symbolic Rewriting Techniques workshop, which was held at the Centro Stefano Franscini in Ascona, Switzerland, from April 30 to May 4, 1995. That workshop brought together 40 researchers from various areas of rewriting techniques, the main goal being the investigation of common threads and methods. Following the workshops, each contribution was formally refereed and 14 papers were selected for publication.
Proceedings of a high-level conference on discrete mathematics, focusing on group actions in the areas of pure mathematics, applied mathematics, computer science, physics, and chemistry. A useful tool for researchers and graduate students in discrete mathematics and theoretical computer science.
Offers a comprehensive introduction to the fundamentalstructures and applications of a wide range of contemporary codingoperations This book offers a comprehensive introduction to the fundamentalstructures and applications of a wide range of contemporary codingoperations. This text focuses on the ways to structure informationso that its transmission will be in the safest, quickest, and mostefficient and error-free manner possible. All coding operations arecovered in a single framework, with initial chapters addressingearly mathematical models and algorithmic developments which led tothe structure of code. After discussing the general foundations ofcode, chapters proceed to cover individual t...
The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he di...
Proceedings of the Third Workshop on Computer Algebra in Scientific Computing, Samarkand, Octobe5r 5-9, 2000
Computer algebra systems are now ubiquitous in all areas of science and engineering. This highly successful textbook, widely regarded as the 'bible of computer algebra', gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems. Designed to accompany one- or two-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential reference for professionals in the area. Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, coding theory, cryptography, computational logic, and the design of calendars and musical scales). A great deal of historical information and illustration enlivens the text. In this third edition, errors have been corrected and much of the Fast Euclidean Algorithm chapter has been renovated.
This book provides algorithms and ideas for computationalists. Subjects treated include low-level algorithms, bit wizardry, combinatorial generation, fast transforms like the Fourier transform, and fast arithmetic for both real numbers and finite fields. Various optimization techniques are described and the actual performance of many given implementations is examined. The focus is on material that does not usually appear in textbooks on algorithms. The implementations are done in C++ and the GP language, written for POSIX-compliant platforms such as the Linux and BSD operating systems.
This is a tutorial introduction to the Axiom Computer Algebra system. It includes examples that illustrate some of the basic abilities.
This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at Independent University of Moscow and Moscow State University, Moscow, Russia. The papers reflect the modern interplay between partial differential equations and various aspects of algebra and computer science. The topics discussed are: relations between integrability and differential rings, supermanifolds, differential calculus over graded algebras, noncommutative generalizations of PDEs, quantum vector fields, generalized Nijenhuis torsion, cohomological approach to the geometry of differential equations, the argument shift method, Frölicher structures in the formal Kadomtsev–Petviashvili hierarchy, and computer-based determination of optimal systems of Lie subalgebras. The companion volume (Contemporary Mathematics, Volume 788) is devoted to Geometry and Mathematical Physics.