You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The chapters in this volume, written by international experts from different fields of mathematics, are devoted to honoring George Isac, a renowned mathematician. These contributions focus on recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and several other important topics at the forefront of nonlinear analysis and optimization.
In vector optimization one investigates optimal elements such as min imal, strongly minimal, properly minimal or weakly minimal elements of a nonempty subset of a partially ordered linear space. The prob lem of determining at least one of these optimal elements, if they exist at all, is also called a vector optimization problem. Problems of this type can be found not only in mathematics but also in engineer ing and economics. Vector optimization problems arise, for exam ple, in functional analysis (the Hahn-Banach theorem, the lemma of Bishop-Phelps, Ekeland's variational principle), multiobjective pro gramming, multi-criteria decision making, statistics (Bayes solutions, theory of tests, mi...
The mood of systemic crisis that has marked the early 21st century has been accompanied by an upsurge in Marxist thought in a whole range of domains and extends to art history. In this volume 19 scholars from different generations, different national contexts and with different relationships to Marxism reflect on the status of 18 "keywords" with special pertinence to Marxist art-historical inquiry today. Starting point of the researches was the knowledge that while certain keywords have been crucial to recent developments in Marxist art history and cultural theory more broadly, others seem to have slipped out of view. The scholars are not so much interested in the "historical semantics" of words – although that plays some role in the essays – as in the present state of Marxist art history.
He consider a cone dominance problem: given a "preference" cone lP and a set n X ~ R of available, or feasible, alternatives, the problem is to identify the non dominated elements of X. The nonzero elements of lP are assumed to model the do- nance structure of the problem so that y s X dominates x s X if Y = x + P for some nonzero p S lP. Consequently, x S X is nondominated if, and only if, ({x} + lP) n X = {x} (1.1) He will also refer to nondominated points as efficient points (in X with respect to lP) and we will let EF(XJP) denote the set of such efficient points. This cone dominance problem draws its roots from two separate, but related, ori gins. The first of these is multi-attribute decision making in which the elements of the set X are endowed with various attributes, each to be maximized or minimized.
We always come cross several decision-making problems in our daily life. Such problems are always conflicting in which many different view points should be satisfied. In politics, business, industrial systems, management science, networks, etc. one often encounters such kind of problems. The most important and difficult part in such problems is the conflict between various objectives and goals. In these problems, one has to find the minimum(or maximum) for several objective functions. Such problems are called vector optimization problems (VOP),multi-criteria optimization problems or multi-objective optimization problems. This volume deals with several different topics / aspects of vector optimization theory ranging from the very beginning to the most recent one. It contains fourteen chapters written by different experts in the field of vector optimization.