You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Closing a gap in the literature, this is the first comprehensive handbook on this modern and important polymer topic. Edited by highly experienced and top scientists in the field, this ready reference covers all aspects, including material science, biopolymers, gels, phase separating systems, frontal polymerization and much more. The introductory chapter offers the perfect starting point for the non-expert.
Assuming no more than an undergraduate knowledge of chemistry, the authors take the reader through the necessary mathematical and theoretical background of oscillating reactions, chaos and chemical waves to advanced topics of current research interest in chemical systems.
This book introduces readers to the full range of current and background activity in the rapidly growing field of nonlinear dynamics. It uses a step-by-step introduction to dynamics and geometry in state space to help in understanding nonlinear dynamics and includes a thorough treatment of both differential equation models and iterated map models as well as a derivation of the famous Feigenbaum numbers. It is the only introductory book available that includes the important field of pattern formation and a survey of the controversial questions of quantum chaos. This second edition has been restructured for easier use and the extensive annotated references are updated through January 2000 and include many web sites for a number of the major nonlinear dynamics research centers. With over 200 figures and diagrams, analytic and computer exercises this book is a necessity for both the classroom and the lab.
Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.
Systems Self-Assembly is the only book to showcase state-of-the-art self-assembly systems that arise from the computational, biological, chemical, physical and engineering disciplines. Written by world experts in each area, it provides a coherent, integrated view of both book practice examples and new trends with a clearly presented computational flavor. The unifying thread throughout the text is the computational nature of self-assembling systems.This book consists of 13 chapters dealing with a variety of topics such as the patterns of self-organised nanoparticle assemblies; biomimetic design of dynamic self-assembling systems; computing by self-assembly involving DNA molecules, polyominoes...
Just a few decades ago, chemical oscillations were thought to be exotic reactions of only theoretical interest. Now known to govern an array of physical and biological processes, including the regulation of the heart, these oscillations are being studied by a diverse group across the sciences. This book is the first introduction to nonlinear chemical dynamics written specifically for chemists. It covers oscillating reactions, chaos, and chemical pattern formation, and includes numerous practical suggestions on reactor design, data analysis, and computer simulations. Assuming only an undergraduate knowledge of chemistry, the book is an ideal starting point for research in the field. The book ...