You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures...
In the last five years or so there has been an important renaissance in the area of (mathematical) modeling, identification and (stochastic) control. It was the purpose of the Advanced Study Institute of which the present volume constitutes the proceedings to review recent developments in this area with par ticular emphasis on identification and filtering and to do so in such a manner that the material is accessible to a wide variety of both embryo scientists and the various breeds of established researchers to whom identification, filtering, etc. are important (such as control engineers, time series analysts, econometricians, probabilists, mathematical geologists, and various kinds of pure ...
This book presents a framework for the control of networked systems utilizing submodular optimization techniques. The main focus is on selecting input nodes for the control of networked systems, an inherently discrete optimization problem with applications in power system stability, social influence dynamics, and the control of vehicle formations. The first part of the book is devoted to background information on submodular functions, matroids, and submodular optimization, and presents algorithms for distributed submodular optimization that are scalable to large networked systems. In turn, the second part develops a unifying submodular optimization approach to controlling networked systems b...
This volume developed from a Workshop on Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding which was held at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota, from June 1-5, 2010. The subject matter ranged widely from observational data to theoretical mechanics, and reflected the broad scope of the workshop. In both the prepared presentations and in the informal discussions, the workshop engaged exchanges across disciplines and invited a lively interaction between modelers and observers. The articles in this volume were invited and fully refereed. They provide a representative if necessarily incomplete account of the field of natural locomotion during a period of rapid growth and expansion. The papers presented at the workshop, and the contributions to the present volume, can be roughly divided into those pertaining to swimming on the scale of marine organisms, swimming of microorganisms at low Reynolds numbers, animal flight, and sliding and other related examples of locomotion.
This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.
This 2006 work is intended for students who want a rigorous, systematic, introduction to engineering dynamics.
The study of complex, interconnected mechanical systems with rigid and flexible articulated components is of growing interest to both engineers and mathematicians. Recent work in this area reveals a rich geometry underlying the mathematical models used in this context. In particular, Lie groups of symmetries, reduction, and Poisson structures play a significant role in explicating the qualitative properties of multibody systems. In engineering applications, it is important to exploit the special structures of mechanical systems. For example, certain mechanical problems involving control of interconnected rigid bodies can be formulated as Lie-Poisson systems. The dynamics and control of robot...