You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
How a team of musicians, engineers, computer scientists, and psychologists developed computer music as an academic field and ushered in the era of digital music. In the 1960s, a team of Stanford musicians, engineers, computer scientists, and psychologists used computing in an entirely novel way: to produce and manipulate sound and create the sonic basis of new musical compositions. This group of interdisciplinary researchers at the nascent Center for Computer Research in Music and Acoustics (CCRMA, pronounced “karma”) helped to develop computer music as an academic field, invent the technologies that underlie it, and usher in the age of digital music. In The Sound of Innovation, Andrew N...
None
Records of the settlers of Northern Montgomery, Robertson and sumner Counties, Tennessee.
The Radio Phonics Laboratory explores the intersection of technology and creativity that shaped the sonic landscape of the 20th century. This fascinating story unravels the intricate threads of telecommunications, from the invention of the telephone to the advent of global communication networks. At the heart of the narrative is the evolution of speech synthesis, a groundbreaking innovation that not only revolutionized telecommunications but also birthed a new era in electronic music. Tracing the origins of synthetic speech and its applications in various fields, the book unveils the pivotal role it played in shaping the artistic vision of musicians and sound pioneers.
Inside Computer Music is an investigation of how new technological developments have influenced the creative possibilities of composers of computer music in the last 50 years. This book combines detailed research into the development of computer music techniques with nine case studies that analyze key works in the musical and technical development of computer music. The book's companion website offers demonstration videos of the techniques used and downloadable software. There, readers can view interviews and test emulations of the software used by the composers for themselves. The software also presents musical analyses of each of the nine case studies to enable readers to engage with the musical structure aurally and interactively.
This is an introduction to basic music technology, including acoustics for sound production and analysis, Fourier, frequency modulation, wavelets, and physical modeling and a classification of musical instruments and sound spaces for tuning and counterpoint. The acoustical theory is applied to its implementation in analogue and digital technology, including a detailed discussion of Fast Fourier Transform and MP3 compression. Beyond acoustics, the book discusses important symbolic sound event representation and software as typically realized by MIDI and denotator formalisms. The concluding chapters deal with globalization of music on the Internet, referring to iTunes, Spotify and similar environments. The book will be valuable for students of music, music informatics, and sound engineering.