You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinf...
This short book provides basic information about bioinstrumentation and electric circuit theory. Many biomedical instruments use a transducer or sensor to convert a signal created by the body into an electric signal. Our goal here is to develop expertise in electric circuit theory applied to bioinstrumentation. We begin with a description of variables used in circuit theory, charge, current, voltage, power and energy. Next, Kirchhoff's current and voltage laws are introduced, followed by resistance, simplifications of resistive circuits and voltage and current calculations. Circuit analysis techniques are then presented, followed by inductance and capacitance, and solutions of circuits using...
Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering ethics. Enderle and Bronzino tackle these core topics at a level appropriate for senior undergraduate st...
Introduction to Biomedical Engineering, Fourth Edition is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling, anatomy and physiology, electrical engineering, signal processing and instrumentation, biomechanics, biomaterials science, tissue engineering and medical and engineering ethics. The authors tackle these core topics at a level appropriate for senior undergraduate...
Intended as an introduction to the field of biomedical engineering, this book covers the topics of biomechanics (Part I) and bioelectricity (Part II). Each chapter emphasizes a fundamental principle or law, such as Darcy's Law, Poiseuille's Law, Hooke's Law, Starling's Law, levers, and work in the area of fluid, solid, and cardiovascular biomechanics. In addition, electrical laws and analysis tools are introduced, including Ohm's Law, Kirchhoff's Laws, Coulomb's Law, capacitors and the fluid/electrical analogy. Culminating the electrical portion are chapters covering Nernst and membrane potentials and Fourier transforms. Examples are solved throughout the book and problems with answers are given at the end of each chapter. A semester-long Major Project that models the human systemic cardiovascular system, utilizing both a Matlab numerical simulation and an electrical analog circuit, ties many of the book's concepts together.
This is the second in a series of three short books on probability theory and random processes for biomedical engineers. This volume focuses on expectation, standard deviation, moments, and the characteristic function. In addition, conditional expectation, conditional moments and the conditional characteristic function are also discussed. Jointly distributed random variables are described, along with joint expectation, joint moments, and the joint characteristic function. Convolution is also developed. A considerable effort has been made to develop the theory in a logical manner—developing special mathematical skills as needed. The mathematical background required of the reader is basic knowledge of differential calculus. Every effort has been made to be consistent with commonly used notation and terminology—both within the engineering community as well as the probability and statistics literature. The aim is to prepare students for the application of this theory to a wide variety of problems, as well give practicing engineers and researchers a tool to pursue these topics at a more advanced level. Pertinent biomedical engineering examples are used throughout the text.
This unified modeling textbook for students of biomedical engineering provides a complete course text on the foundations, theory and practice of modeling and simulation in physiology and medicine. It is dedicated to the needs of biomedical engineering and clinical students, supported by applied BME applications and examples. Developed for biomedical engineering and related courses: speaks to BME students at a level and in a language appropriate to their needs, with an interdisciplinary clinical/engineering approach, quantitative basis, and many applied examples to enhance learning Delivers a quantitative approach to modeling and also covers simulation: the perfect foundation text for studies across BME and medicine Extensive case studies and engineering applications from BME, plus end-of-chapter exercises
Learn to Use Nanoscale Materials to Design Novel Biomedical Devices and Applications Discover how to take full advantage of nanoscale materials in the design and fabrication of leading-edge biomedical devices. The authors introduce you to a variety of possible clinical applications such as drug delivery, diagnostics, and cancer therapy. In addition, the authors explore the interface between micron and nanoscale materials for the development of applications such as tissue engineering. Finally, they examine the mechanisms of cell interactions with material surfaces through the use of nanotechnology-based material processing and characterization methods. The text's three sections highlight its ...
The Physiological Measurement Handbook presents an extensive range of topics that encompass the subject of measurement in all departments of medicine. The handbook describes the use of instruments and techniques for practical measurements required in medicine. It covers sensors, techniques, hardware, and software as well as information on processing systems, automatic data acquisition, reduction and analysis, and their incorporation for diagnosis. Suitable for both instrumentation designers and users, the handbook enables biomedical engineers, scientists, researchers, students, health care personnel, and those in the medical device industry to explore the different methods available for meas...
In the past half century, filamentous fungi have grown in commercial importance not only in the food industry but also as sources of pharmaceutical agents for the treatment of infectious and metabolic diseases and of specialty proteins and enzymes used to process foods, fortify detergents, and perform biotransformations. The commercial impact of molds is also measured on a negative scale since some of these organisms are significant as pathogens of crop plants, agents of food spoilage, and sources of toxic and carcinogenic compounds. Recent advances in the molecular genetics of filamentous fungi are finding increased application in the pharmaceutical, agricultural, and enzyme industries, and this trend promises to continue as the genomics of fungi is explored and new techniques to speed genetic manipulation become available. This volume focuses on the filamentous fungi and highlights the advances of the past decade, both in methodology and in the understanding of genomic organization and regulation of gene and pathway expression.