You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The reviews in this volume address advances in three important but diverse areas of nuc1ear physics. Within nuc1ear physics it would be hard to provide a wider range of subject matter, style, or treatment. The first artic1e, on quark bags, is a pedagogic artic1e intended to make accessible to the nuc1ear physics community important new ideas from partic1e physics. The second, on interacting boson models, reviews a very interesting and controversial new approach to some of the central problems of nuc1ear spectroscopy. The third, on relativistic heavy-ion physics, is a guide to the extensive literature on a new subject which has been fuH of great expectations, puz zling data, and speculative ideas. In the past decade, partic1e theorists' understanding of the structure of hadrons has undergone a revolution strikingly similar to that brought about in nuc1ear physics by the introduction of the Iluc1ear sheH model. Like the sheH model, the bag model of hadrons phenomenologically specifies an interior region in which constituents are confined and described by single-partic1e wave functions that are only weakly perturbed by residual interactions.
The nucleus and its constituents are a challenging problem. The lectures collected in this book present a broad and comprehensive review of the current knowledge about nuclei.They cover topics such as searching for signatures of the quarks in nuclei with electromagnetic probes and, at much higher energies, for signatures of the quark-gluon plasma in ultrarelativistic nuclear collisions. The attempts to obtain new nuclei in the laboratory are also discussed, as well as the central role played by nuclear physics in the development of weak interactions. Progress in all these areas rests on a deeper theoretical handling of the nuclear and nucleon’s structure. The latter can also be addressed by relying on numerical solutions of QCD on a discrete space-time lattice. The advancement of computational capabilities has spurred a growing interest in this approach. Finally, the book deals with different paths toward solving non-perturbative QCD.
When Hans Bethe, at the age of 97, asked his long-term collaborator, Gerry Brown, to explain his scientific work to the world, the latter knew that this was a steep task. As the late John Bahcall famously remarked: ?If you know his (Bethe's) work, you might be inclined to think he is really several people, all of whom are engaged in a conspiracy to sign their work with the same name?. Almost eight decades of original research, hundreds of scientific papers, numerous books, countless reports spanning the key areas of 20th century physics are the impressive record of Hans Bethe's academic work.In answering Bethe's request, the editors enlisted the help of experts in the different research fiel...
Quantum many-body theory as a discipline in its own right dates largely from the 1950's. It has developed since then to its current position as one of the cornerstones of modern theoretical physics. The field remains vibrant and active, vigorous and exciting. Indeed, its successes and importance were vividly illustrated prior to the conference by the sharing of the 1998 Nobel Prizes in both Physics and Chemistry by three many-body theorists. Two of those Nobel laureates, Walter Kohn and Bob Laughlin, delivered invited lectures at this meeting, the tenth in the series of International Conferences on Recent Progress in Many-Body Theories. This series is universally recognized as being the prem...
This book contains comprehensive reviews and reprints on dynamical groups, spectrum generating algebras and spectrum supersymmetries, and their applications in atomic and molecular physics, nuclear physics, particle physics, and condensed matter physics. It is an important source for researchers as well as students who are doing courses on Quantum Mechanics and Advanced Quantum Mechanics.
Writing even in overview of more than a half-century of professional life of a giant of twentieth century science and technology such as Edward Teller is a daunting task. We ask in advance the reader's pardon for passing over quickly or omitting entirely aspects of Teller's life and work which may seem of major significance but which we, due to differences of perspective or knowledge, speak too little or not at all. We refer those interested in greater depth to the excellent biography by Stanley Blumberg and Gwen Owens, The Life and Times of Edward Teller, and we have (with his permission) printed Professor Eugene Wigner's An Appreciation On the 60th Birthday of Edward Teller immediately after this foreword, so that the reader may consider the perspective of one of Teller's most illustrious contemporaries more than two decades ago. Edward Teller was born in Budapest, Hungary on January 15,1908. While his childhood was spent in the twilight of the Victorian age and its abrupt conclusion in the Great War and his youth in its especially turbulent after math in central Europe, he doesn't bear visible scars from it.
This edition of the private and scientific correspondence of Sir Rudolf Peierls gives a unique insight into the life and work of one of the greatest theoretical physicists of the 20th century. Rudolf Peierls'' scientific work contributed to the early developments in quantum mechanics, and he is well known and much appreciated for his contributions to various disciplines, including solid state physics, nuclear physics, and particle physics. As an enthusiastic and devoted teacher, he passed on his knowledge and understanding and inspired the work of collaborators and students alike. As an effective administrator he was responsible, almost single-handedly, for the establishment of an outstanding successful centre of theoretical physics in Birmingham, and later contributed much to theoretical physics in Oxford.
These six lecture courses provide the background necessary in the understanding of the application of lattice methods to phenomenology, and give examples of interesting applications. The first three introduce the necessary techniques: chiral perturbation theory, heavy quark effective field theory, and lattice gauge theory. The remaining three describe how these techniques are used, mainly in lattice simulations, in the study of interesting phenomenological questions: vacuum structure, finite temperature QCD, and electroweak matrix elements. What distinguishes this volume from others is its focus on providing the background necessary for us to understand the methods and the significance of lattice gauge theory research.