You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a comprehensive understanding of the nucleation, motion, and interaction between crystalline defects called dislocations.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors.The"Willardson and Beer"Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute t...
Defects in ion-implanted semiconductors are important and will likely gain increased importance as annealing temperatures are reduced with successive IC generations. Novel implant approaches, such as MdV implantation, create new types of defects whose origin and annealing characteristics will need to be addressed. Publications in this field mainly focus on the effects of ion implantation on the material and the modification in the implanted layer after high temperature annealing. The editors of this volume and Volume 45 focus on the physics of the annealing kinetics of the damaged layer. An overview of characterization tehniques and a critical comparison of the information on annealing kinetics is also presented. - Provides basic knowledge of ion implantation-induced defects - Focuses on physical mechanisms of defect annealing - Utilizes electrical, physical, and optical characterization tools for processed semiconductors - Provides the basis for understanding the problems caused by the defects generated by implantation and the means for their characterization and elimination
Presents a comprehensive treatment of the fundamentals of dislocations. This book covers the elastic theory of straight and curved dislocations, and includes a chapter on elastic anisotropy. It also presents applications to the theory of dislocation motion at low and high temperatures.
Written by leading authorities in the field of damage and micromechanics of composites, this book deals mainly with the damage impaired in composites due to different types of loading. It examines the different types of damage in composites in the fiber, matrix, debonding and delamination. It also reviews the theoretical characterization of damage, its experimental determination as well as the numerical simulation of damage.
The Institute for Mathematical Sciences at the National University of Singapore hosted a two-month research program on "Mathematical Theory and Numerical Methods for Computational Materials Simulation and Design" from 1 July to 31 August 2009. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects four expanded lecture notes with self-contained tutorials. They cover a number of aspects on multiscale modeling, analysis and simulations for problems arising from materials science including some critical components in computational prediction of materials properties such as the multiscale properties of complex materials, properties of defects, interfaces and material microstructures under different conditions, critical issues in developing efficient numerical methods and analytic frameworks for complex and multiscale materials models. This volume serves to inspire graduate students and researchers who choose to embark into original research work in these fields.