You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Examines the Korean War using primary sources including stories from soldiers who served there.
"...the great feature of the book is that anyone can read it without excessive head scratching...You'll find plenty here to keep you occupied, amused, and informed. Buy, dip in, wallow." -IAN STEWART, NEW SCIENTIST "...a delightful look at numbers and their roles in everything from language to flowers to the imagination." -SCIENCE NEWS "...a fun and fascinating tour of numerical topics and concepts. It will have readers contemplating ideas they might never have thought were understandable or even possible." -WISCONSIN BOOKWATCH "This popularization of number theory looks like another classic." -LIBRARY JOURNAL
A multifaceted biography of a brilliant mathematician and iconoclast A mathematician unlike any other, John Horton Conway (1937–2020) possessed a rock star’s charisma, a polymath’s promiscuous curiosity, and a sly sense of humor. Conway found fame as a barefoot professor at Cambridge, where he discovered the Conway groups in mathematical symmetry and the aptly named surreal numbers. He also invented the cult classic Game of Life, a cellular automaton that demonstrates how simplicity generates complexity—and provides an analogy for mathematics and the entire universe. Moving to Princeton in 1987, Conway used ropes, dice, pennies, coat hangers, and the occasional Slinky to illustrate his winning imagination and share his nerdish delights. Genius at Play tells the story of this ambassador-at-large for the beauties and joys of mathematics, lays bare Conway’s personal and professional idiosyncrasies, and offers an intimate look into the mind of one of the twentieth century’s most endearing and original intellectuals.
Thanks to creative uses of the environment, Xochimilco's residents preserved their culture and society in the face of colonial disruption.
This classic on games and how to play them intelligently is being re-issued in a new, four volume edition. This book has laid the foundation to a mathematical approach to playing games. The wise authors wield witty words, which wangle wonderfully winning ways. In Volume 1, the authors do the Spade Work, presenting theories and techniques to "dissect" games of varied structures and formats in order to develop winning strategies.
Start with a single shape. Repeat it in some way—translation, reflection over a line, rotation around a point—and you have created symmetry. Symmetry is a fundamental phenomenon in art, science, and nature that has been captured, described, and analyzed using mathematical concepts for a long time. Inspired by the geometric intuition of Bill Thurston and empowered by his own analytical skills, John Conway, with his coauthors, has developed a comprehensive mathematical theory of symmetry that allows the description and classification of symmetries in numerous geometric environments. This richly and compellingly illustrated book addresses the phenomenological, analytical, and mathematical aspects of symmetry on three levels that build on one another and will speak to interested lay people, artists, working mathematicians, and researchers.
Looks at the reasons for the adoption of the 13th and 14th Amendments, describes the laws it sets forth, and discusses challenges to and violations of the amendments.
History consists mainly of the milestones, the turning points of time. What are often lost in the fray are the details. Thankfully for those who have a hunger for history, books like Sisters, Seeds, and Cedars exist to fill in some of the gaps of history. The book contains letters from two sisters, Cornelia and Clara. Originally from Alabama, Clara moves on to Arkansas, while Cornelia stays where her roots are. Clara eventually puts down roots of her own, and the sisters' continue to converse through letter writing for their entire lives. The letters span the generations and provide insight into everyday life between 1850-1928. Without them, it might not be known that "a dewlarkie is most li...
None