You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ruslan Mitkov's highly successful Oxford Handbook of Computational Linguistics has been substantially revised and expanded in this second edition. Alongside updated accounts of the topics covered in the first edition, it includes 17 new chapters on subjects such as semantic role-labelling, text-to-speech synthesis, translation technology, opinion mining and sentiment analysis, and the application of Natural Language Processing in educational and biomedical contexts, among many others. The volume is divided into four parts that examine, respectively: the linguistic fundamentals of computational linguistics; the methods and resources used, such as statistical modelling, machine learning, and corpus annotation; key language processing tasks including text segmentation, anaphora resolution, and speech recognition; and the major applications of Natural Language Processing, from machine translation to author profiling. The book will be an essential reference for researchers and students in computational linguistics and Natural Language Processing, as well as those working in related industries.
This thesis presents approaches to computationally creative natural language generation focusing on theoretical foundations, practical solutions and evaluation. I defend that a theoretical definition is crucial for computational creativity and that the practical solution must closely follow the theoretical definition. Finally, evaluation must be based on the underlying theory and what was actually modelled in the practical solution. A theoretical void in the existing theoretical work on computational creativity is identified. The existing theories do not explicitly take into account the communicative nature of natural language. Therefore, a new theoretical framework is elaborated that identi...
The book provides an overview of more than a decade of joint R&D efforts in the Low Countries on HLT for Dutch. It not only presents the state of the art of HLT for Dutch in the areas covered, but, even more importantly, a description of the resources (data and tools) for Dutch that have been created are now available for both academia and industry worldwide. The contributions cover many areas of human language technology (for Dutch): corpus collection (including IPR issues) and building (in particular one corpus aiming at a collection of 500M word tokens), lexicology, anaphora resolution, a semantic network, parsing technology, speech recognition, machine translation, text (summaries) gener...
This book constitutes the refereed proceedings of the 11th Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2023, held in Alicante, Spain, in June 27–30, 2023. The 56 papers accepted for these proceedings were carefully reviewed and selected from 86 submissions. They deal with Machine Learning, Document Analysis, Computer Vision, 3D Computer Vision, Computer Vision Applications, Medical Imaging & Applications, Machine Learning Applications.
Printbegrænsninger: Der kan printes 10 sider ad gangen og max. 40 sider pr. session
This two-volume set, consisting of LNCS 8403 and LNCS 8404, constitutes the thoroughly refereed proceedings of the 14th International Conference on Intelligent Text Processing and Computational Linguistics, CICLing 2014, held in Kathmandu, Nepal, in April 2014. The 85 revised papers presented together with 4 invited papers were carefully reviewed and selected from 300 submissions. The papers are organized in the following topical sections: lexical resources; document representation; morphology, POS-tagging, and named entity recognition; syntax and parsing; anaphora resolution; recognizing textual entailment; semantics and discourse; natural language generation; sentiment analysis and emotion recognition; opinion mining and social networks; machine translation and multilingualism; information retrieval; text classification and clustering; text summarization; plagiarism detection; style and spelling checking; speech processing; and applications.
Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.
Studying language variation requires comprehensive interdisciplinary knowledge and new computational tools. This essential reference introduces researchers and graduate students in computer science, linguistics, and NLP to the core topics in language variation and the computational methods applied to similar languages, varieties, and dialects.
Thanks to the availability of texts on the Web in recent years, increased knowledge and information have been made available to broader audiences. However, the way in which a text is written—its vocabulary, its syntax—can be difficult to read and understand for many people, especially those with poor literacy, cognitive or linguistic impairment, or those with limited knowledge of the language of the text. Texts containing uncommon words or long and complicated sentences can be difficult to read and understand by people as well as difficult to analyze by machines. Automatic text simplification is the process of transforming a text into another text which, ideally conveying the same messag...