You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In an effort to reduce dependency on fossil fuel resources, biomass could essentially be converted into chemicals using high capacity processes. The Fischer–Tropsch Synthesis (FTS) pathway has been chosen as the focus of this book as it is a mature area, and unlike other pathways such as pyrolysis, FTS is a potential way of producing fuel/hydrocarbons with no sulfur, no nitrogen, and no heavy metals contamination, making it a good choice. Integrating technological development and business development rationales to highlight the key technological developments that are necessary to industrialize biofuels on a global scale, this book focusses on the key challenges that still hinder the effect...
Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understan...
Innovations in the Global Biogas Industry: Applications of Green Principles critically reviews the whole biogas supply chain from substrates to upgraded biogas. The book evaluates the application of green principles at each stage of biogas production and combines this with case studies and a review of the latest technological advances to produce a comprehensive assessment of the current state of the biogas industry. The first three sections of the book guide the reader through the whole supply chain of biogas production, from feedstock and waste management, to process design, plant design, operation, optimization, and end products. The sustainability of biogas industry operations is then add...
This edited book explores the most promising and reliable technological developments expected to impact on the next generation of desalination systems. The book includes research studies which takes the reader on a fascinating walk through the multidisciplinary world of membrane science applied to water treatment. Concerning the ultimate technological advancement, the book seeks to investigate how to bridge the gap between the laboratory scale and the applicability to industry.
This book presents the catalytic conversion of carbon dioxide into various hydrocarbons and other products using photochemical, electrochemical and thermo-chemical processes. Products include formate, formic acid, alcohols, lower and higher hydrocarbons, gases such as hydrogen, carbon monoxide and syngas.
This edited book provides an in-depth overview of carbon dioxide (CO2) transformations to sustainable power technologies. It also discusses the wide scope of issues in engineering avenues, key designs, device fabrication, characterizations, various types of conversions and related topics. It includes studies focusing on the applications in catalysis, energy conversion and conversion technologies, etc. This is a unique reference guide, and one of the detailed works is on this technology. The book is the result of commitments by leading researchers from various backgrounds and expertise. The book is well structured and is an essential resource for scientists, undergraduate, postgraduate students, faculty, R&D professionals, energy chemists and industrial experts.
Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), ...
BIODIESEL This outstanding new volume provides a comprehensive overview on biodiesel technologies, covering a broad range of topics and practical applications, edited by one of the most well-respected and prolific engineers in the world and his team. Energy technologies have attracted great attention due to the fast development of sustainable energy. Biodiesel technologies have been identified as the sustainable route through which overdependence on fossil fuels can be reduced. Biodiesel has played a key role in handling the growing challenge of a global climate change policy. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is a cost-effective, renewa...
Sustainable production of hydrocarbon biofuels from biomass, fuels that are fully compatible with existing internal combustion engines, will allow the global transport economy to transition to a sustainable energy source without the need for capital-intensive new infrastructures. Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels presents a comprehensive and easy to understand consolidation of existing knowledge for the production of hydrocarbon biofuels from biomass. Three major areas for the conversion of biomass to hydrocarbon biofuels are addressed: i) Chemical and thermochemical conversion processes, ii) Biological and biochemical conversion processes, a...