You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Biomimetics, in general terms, aims at understanding biological principles and applying them for the development of man-made tools and technologies. This approach is particularly important for the purposeful design of passive as well as functional biomaterials that mimic physicochemical, mechanical and biological properties of natural materials, making them suitable, for example, for biomedical devices or as scaffolds for tissue regeneration. The book comprehensively covers biomimetic approaches to the development of biomaterials, including: an overview of naturally occurring or nature inspired biomaterials; an in-depth treatment of the surface aspects pivotal for the functionality; synthesi...
Polymers from natural sources are particularly useful as biomaterials and in regenerative medicine, given their similarity to the extracellular matrix and other polymers in the human body. This important book reviews the wealth of research on both tried and promising new natural-based biomedical polymers, together with their applications as implantable biomaterials, controlled-release carriers or scaffolds for tissue engineering.The first part of the book reviews the sources, processing and properties of natural-based polymers for biomedical applications. Part two describes how the surfaces of polymer-based biomaterials can be modified to improve their functionality. The third part of the bo...
Dynamic soft materials that have the ability to expand and contract, change stiffness, self-heal or dissolve in response to environmental changes, are of great interest in applications ranging from biosensing and drug delivery to soft robotics and tissue engineering. This book covers the state-of-the-art and current trends in the very active and exciting field of bioinspired soft matter, its fundamentals and comprehension from the structural-property point of view, as well as materials and cutting-edge technologies that enable their design, fabrication, advanced characterization and underpin their biomedical applications. The book contents are supported by illustrated examples, schemes, and figures, offering a comprehensive and thorough overview of key aspects of soft matter. The book will provide a trusted resource for undergraduate and graduate students and will extensively benefit researchers and professionals working across the fields of chemistry, biochemistry, polymer chemistry, materials science and engineering, nanosciences, nanotechnologies, nanomedicine, biomedical engineering and medical sciences.
At the interface of biology, chemistry, and materials science, this book provides an overview of this vibrant research field, treating the seemingly distinct disciplines in a unified way by adopting the common viewpoint of surface science. The editors, themselves prolific researchers, have assembled here a team of top-notch international scientists who read like a "who's who" of biomaterials science and engineering. They cover topics ranging from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices. As a result, the book explains the complex interplay of cell behavior and the physics and materials science of artificial devices. Of equal interest to young, ambitious scientists as well as to experienced researchers.
Natural Polymers in Wound Healing and Repair: From Basic Concepts to Emerging Trends presents comprehensive coverage on the development and application of natural polymers in wound healing and repair, including fundamental concepts, traditional approaches, cutting-edge methods and emerging trends. The application of natural polymers has evolved from their use in the simplest wound management material, to drug eluting matrices, to cell-laden constructs, and to 3D bio-printed skin equivalents. This book reflects the remarkable progress that has been made in recent years in this innovative field. This is an essential resource for researchers, scientists, and advanced students across polymer sci...
In-depth information on natural biomaterials and their applications for translational medicine! Undiluted expertise: edited by world-leading experts with contributions from top-notch international scientists, collating experience and cutting-edge knowledge on natural biomaterials from all over the world A must-have on the shelf in every biomaterials lab: graduate and PhD students beginning their career in biomaterials science and experienced researchers and practitioners alike will turn to this comprehensive reference in their daily work Link to clinical practice: chapters on translational research make readers aware of what needs to be considered when a biomaterial leaves the lab to be routinely used
None
The field of bioactive glasses has been expanding continuously over recent years. This book aims to give the material's scientist an up-to-date reference and guide for education, studies and research.
This is the first experimental protocol book that covers the differentiation of bone marrow-derived stem cells (BMSCs) into specific cell types, targeted at the undergraduate and graduate student level. The 19 chapters deal with the differentiation methods using small molecules, cytokines and polymeric scaffolds.BMSCs are pluripotential in that they not only act as myelo-regenerative and supportive cells, but can also differentiate into almost any kind of cells in our body. In addition, when implanted in vivo, they could help repair multiple tissues such as blood vessels, heart, liver and so on.For the differentiation of BMSCs, many methods have been introduced to adjust their microenvironment (chemical and physical cues), including chemical induction methods using large or small molecules and pellet culture; mechanical stimulation induction methods using cyclic mechano-transduction or ultrasonication; cytokine-released method using scaffolds; and so on.
This is an expanded and revised second edition, presenting accurate and comprehensive information about our leading thermal scientists to current and future generations. In our globalized world, most researchers in thermal analysis do not know each other in person and are not familiar with each other’s achievements. This volume provides the reader with an up-to-date list of the prominent members in this community. The publication contains only living scientists. The selection is based partly on several decades of the editors' personal professional experience and also partly on the opinion of the Regional Editors of the Journal of Thermal Analysis and Calorimetry.