Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

A Concise Course in Algebraic Topology
  • Language: en
  • Pages: 262

A Concise Course in Algebraic Topology

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Homotopy Methods in Algebraic Topology
  • Language: en
  • Pages: 370

Homotopy Methods in Algebraic Topology

This volume presents the proceedings from the AMS-IMS-SIAM Summer Research Conference on Homotopy Methods in Algebraic Topology held at the University of Colorado (Boulder). The conference coincided with the sixtieth birthday of J. Peter May. An article is included reflecting his wide-ranging and influential contributions to the subject area. Other articles in the book discuss the ordinary, elliptic and real-oriented Adams spectral sequences, mapping class groups, configuration spaces, extended powers, operads, the telescope conjecture, $p$-compact groups, algebraic K theory, stable and unstable splittings, the calculus of functors, the $E_{\infty}$ tensor product, and equivariant cohomology theories. The book offers a compendious source on modern aspects of homotopy theoretic methods in many algebraic settings.

Present Time
  • Language: en
  • Pages: 902

Present Time

Reproduction of the original: Present Time by Luther A. Brewer, Barthinius L. Wick

More Concise Algebraic Topology
  • Language: en
  • Pages: 544

More Concise Algebraic Topology

With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the loca...

Rings, Modules, and Algebras in Stable Homotopy Theory
  • Language: en
  • Pages: 265

Rings, Modules, and Algebras in Stable Homotopy Theory

This book introduces a new point-set level approach to stable homotopy theory that has already had many applications and promises to have a lasting impact on the subject. Given the sphere spectrum $S$, the authors construct an associative, commutative, and unital smash product in a complete and cocomplete category of ``$S$-modules'' whose derived category is equivalent to the classical stable homotopy category. This construction allows for a simple and algebraically manageable definition of ``$S$-algebras'' and ``commutative $S$-algebras'' in terms of associative, or associative and commutative, products $R\wedge SR \longrightarrow R$. These notions are essentially equivalent to the earlier notions of $A {\infty $ and $E {\infty $ ring spectra, and the older notions feed naturally into the new framework to provide plentiful examples. There is an equally simple definition of $R$-modules in terms of maps $R\wedge SM\longrightarrow M$. When $R$ is commutative, the category of $R$-modules also has a

Local Cohomology and Its Applications
  • Language: en
  • Pages: 366

Local Cohomology and Its Applications

  • Type: Book
  • -
  • Published: 2001-10-18
  • -
  • Publisher: CRC Press

This volume collects presentations from the international workshop on local cohomology held in Guanajuato, Mexico, including expanded lecture notes of two minicourses on applications in equivariant topology and foundations of duality theory, and chapters on finiteness properties, D-modules, monomial ideals, combinatorial analysis, and related topics. Featuring selected papers from renowned experts around the world, Local Cohomology and Its Applications is a provocative reference for algebraists, topologists, and upper-level undergraduate and graduate students in these disciplines.

Simplicial Objects in Algebraic Topology
  • Language: en
  • Pages: 171

Simplicial Objects in Algebraic Topology

Simplicial sets are discrete analogs of topological spaces. They have played a central role in algebraic topology ever since their introduction in the late 1940s, and they also play an important role in other areas such as geometric topology and algebraic geometry. On a formal level, the homotopy theory of simplicial sets is equivalent to the homotopy theory of topological spaces. In view of this equivalence, one can apply discrete, algebraic techniques to perform basic topological constructions. These techniques are particularly appropriate in the theory of localization and completion of topological spaces, which was developed in the early 1970s. Since it was first published in 1967, Simpli...

Homotopy Invariant Algebraic Structures
  • Language: en
  • Pages: 392

Homotopy Invariant Algebraic Structures

This volume presents the proceedings of the conference held in honor of J. Michael Boardman's 60th birthday. It brings into print his classic work on conditionally convergent spectral sequences. Over the past 30 years, it has become evident that some of the deepest questions in algebra are best understood against the background of homotopy theory. Boardman and Vogt's theory of homotopy-theoretic algebraic structures and the theory of spectra, for example, were two benchmark breakthroughs underlying the development of algebraic $K$-theory and the recent advances in the theory of motives. The volume begins with short notes by Mac Lane, May, Stasheff, and others on the early and recent history ...

Global Homotopy Theory
  • Language: en
  • Pages: 847

Global Homotopy Theory

A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.