You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Photo acceleration has dominated the theoretical plasma physics area in recent years and has found application in all subjects where waves in continuous media are studied - plasma physics, astrophysics, and optics. This theory will provide a modern understanding of photon interaction with matter, helping to develop novel accelerators based on laser-plasma interactions, new radiation sources, and even new models for astrophysical objects. Written by a major player in the field, this book describes the general theory of photo acceleration, which allows fluid, kinetic, quantum, and classical electrodynamical approaches to be formulated. It includes examples from plasma physics, cosmology, fiber optics, mathematical physics, particle accelerator physics, and radiation physics.
This proceedings volume of the 3rd International Workshop on Quantum Aspects of Beam Physics, presents the latest advances in beam dynamics. The frontiers of beam research point to increasingly high energy, greater brightness and lower emittance beams with ever-increasing particle species. These demands have triggered a rapidly growing number of beam phenomena that involve quantum effects. In addition to the more established topics, this volume covers topics on high energy-density particle and photon beams for laboratory astrophysics investigations, as well as the application of beam physics expertise to astrophysics studies. Other exciting new topics are the physics of ultra-cold or condens...
This volume presents a collection of review papers on recent work in the connected areas of strongly correlated systems, the effects of coherence on macroscopic systems, and entanglement in quantum systems. These areas have attracted considerable interest due to their complexity and associated unexpected nontrivial phenomena, and also due to their potential applications in various fields, from materials science to information technology. The coverage includes strongly correlated electronic systems such as low-dimensional complex materials, ordered and disordered spin systems, and aspects of the physics of manganites and graphene, both in equilibrium and far from equilibrium.
The Antikythera mechanism was probably the world’s first ‘analog computer’ — a sophisticated device for calculating the motions of stars and planets. This remarkable assembly of more than 30 gears with a differential mechanism, made on Rhodes or Cos in the first century B.C., revised the view of what the ancient Greeks were capable of creating at that time. A comparable level of engineering didn’t become widespread until the industrial revolution nearly two millennia later. This collection of papers provides a good overview of the current state-of-the-art of quantum information science. We do not know how a quantum Antikythera will look like but all we know is that the best way to predict the future is to create it. From the perspective of the future, it may well be that the real computer age has not yet even begun.
A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap
The current research into solitons and their use in fiber optic communications is very important to the future of communications. Since the advent of computer networking and high speed data transmission technology people have been striving to develop faster and more reliable communications media. Optical pulses tend to broaden over relatively short distances due to dispersion, but solitons on the other hand are not as susceptible to the effects of dispersion, and although they are subject to losses due to attenuation they can be amplified without being received and re-transmitted.This book is the first to provide a thorough overview of optical solitons. The main purpose of this book is to pr...
This volume contains papers presented at the Eleventh International Conference on Ultrafast Phenomena held at Garmisch-Partenkirchen, Germany, from July 12 to 17, 1998. The biannual Ultrafast Phenomena Conferences provide a forum for dis cussion of the latest advances in ultrafast optics and their applications in science and engineering. The Garmisch conference brought together a multidisciplinary group of 440 participants from 27 countries, including 127 students. The enthu siasm of this large number of Participants, the high quality of the papers they presented and the magnificent conference site resulted in a successful and pleasant conference. Progress was reported in the technology of g...
When Hans Bethe, at the age of 97, asked his long-term collaborator, Gerry Brown, to explain his scientific work to the world, the latter knew that this was a steep task. As the late John Bahcall famously remarked: “If you know his (Bethe's) work, you might be inclined to think he is really several people, all of whom are engaged in a conspiracy to sign their work with the same name”. Almost eight decades of original research, hundreds of scientific papers, numerous books, countless reports spanning the key areas of 20th century physics are the impressive record of Hans Bethe's academic work.In answering Bethe's request, the editors enlisted the help of experts in the different research ...
This proceedings volume of the 3rd International Workshop on Quantum Aspects of Beam Physics, presents the latest advances in beam dynamics. The frontiers of beam research point to increasingly high energy, greater brightness and lower emittance beams with ever-increasing particle species. These demands have triggered a rapidly growing number of beam phenomena that involve quantum effects.In addition to the more established topics, this volume covers topics on high energy-density particle and photon beams for laboratory astrophysics investigations, as well as the application of beam physics expertise to astrophysics studies. Other exciting new topics are the physics of ultra-cold or condense...
Dust is ubiquitous in the universe and responsible for stellar and planetary formation. Virtually all previous studies have considered the dust particulates to be a charge neutral component. Satellite missions such as Voyager revealed the extent to which charged dust plays a role in astrophysics. In most areas dust exists in the presence of a dilute plasma. In such a plasma environment the dust becomes charged to a variety of processes (eg photo-ionisation, collisions with electrons and ions, thermionic emission etc). Closer to home in the Earth's mesosphere, rocket measurements and radar observations conclusively demonstrate the importance of charged dust in forming complex structures respo...