You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the fall of 1992 I was invited by Professor Changho Keem to visit Seoul National University and give a series of talks. I was asked to write a monograph based on my talks, and the result was published by the Global Analysis Research Center of that University in 1994. The monograph treated deficiency modules and liaison theory for complete intersections. Over the next several years I continually thought of improvements and additions that I would like to make to the manuscript, and at the same time my research led me in directions that gave me a fresh perspective on much of the material, especially in the direction of liaison theory. This re sulted in a dramatic change in the focus of this ...
A monomial order ideal is a finite collection X of (monic) monomials such that, whenever M∈X and N divides M, then N∈X. Hence X is a poset, where the partial order is given by divisibility. If all, say t t, maximal monomials of X have the same degree, then X is pure (of type t). A pure O-sequence is the vector, h_=(h0=1,h1,...,he), counting the monomials of X in each degree. Equivalently, pure O-sequences can be characterized as the f-vectors of pure multicomplexes, or, in the language of commutative algebra, as the h h-vectors of monomial Artinian level algebras. Pure O-sequences had their origin in one of the early works of Stanley's in this area, and have since played a significant role in at least three different disciplines: the study of simplicial complexes and their f f-vectors, the theory of level algebras, and the theory of matroids. This monograph is intended to be the first systematic study of the theory of pure O-sequences.
This is the first of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains combinatorial and homological surve...
Obtains an explicit formula for generalized Whittaker functions and multiplicity one theorem for all discrete series representations of $SU(2,2)$.
The authors prove a general form of the sum formula $\mathrm{SL}_2$ over a totally real number field. This formula relates sums of Kloosterman sums to products of Fourier coefficients of automorphic representations. The authors give two versions: the spectral sum formula (in short: sum formula) and the Kloosterman sum formula. They have the independent test function in the spectral term, in the sum of Kloosterman sums, respectively.
The solution to the Kohn-Sham equation in the density functional theory of the quantum many-body problem is studied in the context of the electronic structure of smoothly deformed macroscopic crystals. An analog of the classical Cauchy-Born rule for crystal lattices is established for the electronic structure of the deformed crystal under the following physical conditions: (1) the band structure of the undeformed crystal has a gap, i.e. the crystal is an insulator, (2) the charge density waves are stable, and (3) the macroscopic dielectric tensor is positive definite. The effective equation governing the piezoelectric effect of a material is rigorously derived. Along the way, the authors also establish a number of fundamental properties of the Kohn-Sham map.
This text considers a specific Volterra integral operator and investigates its degree of compactness in terms of properties of certain kernel functions. In particular, under certain optimal integrability conditions the entropy numbers $e_n(T_{\rho, \psi})$ satisfy $c_1\norm{\rho\psi}_r0$.
This text describes the components of the moduli space of conjugacy classes of commuting pairs and triples of elements in a compact Lie group. This description is in the extended Dynkin diagram of the simply connected cover, together with the co-root integers and the action of the fundamental group. In the case of three commuting elements, we compute Chern-Simons invariants associated to the corresponding flat bundles over the three-torus, and verify a conjecture of Witten which reveals a surprising symmetry involving the Chern-Simons invariants and the dimensions of the components of the moduli space.
Presents the problem of the splitting of invariant manifolds in multidimensional Hamiltonian systems, stressing the canonical features of the problem. This book offers introduction of a canonically invariant scheme for the computation of the splitting matrix.
Relying on the known two-term quasiclassical asymptotic formula for the trace of the function $f(A)$ of a Wiener-Hopf type operator $A$ in dimension one, in 1982 H. Widom conjectured a multi-dimensional generalization of that formula for a pseudo-differential operator $A$ with a symbol $a(\mathbf{x}, \boldsymbol{\xi})$ having jump discontinuities in both variables. In 1990 he proved the conjecture for the special case when the jump in any of the two variables occurs on a hyperplane. The present paper provides a proof of Widom's Conjecture under the assumption that the symbol has jumps in both variables on arbitrary smooth bounded surfaces.