You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general.Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
This book covers the main physical mechanisms and the different contributions (1/f noise, shot noise, etc.) behind electronic fluctuations in various spintronic devices. It presents the first comprehensive summary of fundamental noise mechanisms in both electronic and spintronic devices and is therefore unique in that aspect. The pedagogic introduction to noise is complemented by a detailed description of how one could set up a noise measurement experiment in the lab. A further extensive description of the recent progress in understanding and controlling noise in spintronics, including the boom in 2D devices, molecular spintronics, and field sensing, is accompanied by both numerous bibliography references and tens of case studies on the fundamental aspects of noise and on some important qualitative steps to understand noise in spintronics. Moreover, a detailed discussion of unsolved problems and outlook make it an essential textbook for scientists and students desiring to exploit the information hidden in noise in both spintronics and conventional electronics.
This book presents a multidisciplinary approach to single-molecule electronics. It includes a complete overview of the field, from the synthesis and design of molecular candidates to the prevalent experimental techniques, complemented by a detailed theoretical description. This all-inclusive strategy provides the reader with the much-needed perspective to fully understand the far-reaching ramifications of single-molecule electronics. In addition, a number of state-of-the-art topics are discussed, including single-molecule spectro-electrical methods, electrochemical DNA sequencing technology, and single-molecule chemical reactions. As a result of this integrative effort, this publication may be used as an introductory textbook to both graduate and advanced undergraduate students, as well as researchers with interests in single-molecule electronics, organic electronics, surface science, and nanoscience.
This book provides insights of World Conference on Smart Trends in Systems, Security and Sustainability (WS4 2022) which is divided into different sections such as Smart IT Infrastructure for Sustainable Society; Smart Management Prospective for Sustainable Society; Smart Secure Systems for Next Generation Technologies; Smart Trends for Computational Graphics and Image Modeling; and Smart Trends for Biomedical and Health Informatics. The proceedings is presented in two volumes. The book is helpful for active researchers and practitioners in the field.
The two-volume set LNCS 3522 and 3523 constitutes the refereed proceedings of the Second Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2005, held in Estoril, Portugal in June 2005. The 170 revised full papers presented were carefully reviewed and selected from 292 submissions. The papers are organized in topical sections on computer vision, shape and matching, image and video processing, image and video coding, face recognition, human activity analysis, surveillance, robotics, hardware architectures, statistical pattern recognition, syntactical pattern recognition, image analysis, document analysis, bioinformatics, medical imaging, biometrics, speech recognition, natural language analysis, and applications.
Metamaterials represent a new emerging innovative field of research which has shown rapid acceleration over the last couple of years. In this handbook, we present the richness of the field of metamaterials in its widest sense, describing artificial media with sub-wavelength structure for control over wave propagation in four volumes.Volume 1 focuses on the fundamentals of electromagnetic metamaterials in all their richness, including metasurfaces and hyperbolic metamaterials. Volume 2 widens the picture to include elastic, acoustic, and seismic systems, whereas Volume 3 presents nonlinear and active photonic metamaterials. Finally, Volume 4 includes recent progress in the field of nanoplasmonics, used extensively for the tailoring of the unit cell response of photonic metamaterials.In its totality, we hope that this handbook will be useful for a wide spectrum of readers, from students to active researchers in industry, as well as teachers of advanced courses on wave propagation.
Water is an indispensable resource for our society. Essential to sustaining life and economic prosperity, water is also the basic component for manufacturing almost everything to keep society alive, including energy, food, clothing, cars, and electronics, among many other examples. It is, thus, an integral part of our lives beyond simply quenching our thirst. In addition, our future economy and security highly depend upon the availability of clean water. Yet given its critical importance, there is a limited supply of renewable freshwater across the globe and there is no substitute. Global population and economic growth, urbanization, and climate change further exacerbate the increasing stress on freshwater supplies. As such, society urgently needs to find the scientific and engineering solutions to more efficiently manage our precious water resources. The volumes of this multi-volume reference cover the latest scientific advancements and solutions in managing and treating this crucial resource.Related Link(s)