You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Heat Equation is one of the three classical linear partial differential equations of second order that form the basis of any elementary introduction to the area of PDEs, and only recently has it come to be fairly well understood. In this monograph, aimed at research students and academics in mathematics and engineering, as well as engineering specialists, Professor Vazquez provides a systematic and comprehensive presentation of the mathematical theory of the nonlinear heat equation usually called the Porous Medium Equation (PME). This equation appears in a number of physical applications, such as to describe processes involving fluid flow, heat transfer or diffusion. Other applications have been proposed in mathematical biology, lubrication, boundary layer theory, and other fields. Each chapter contains a detailed introduction and is supplied with a section of notes, providing comments, historical notes or recommended reading, and exercises for the reader.
This text is concerned with the quantitative aspects of the theory of nonlinear diffusion equations; equations which can be seen as nonlinear variations of the classical heat equation. They appear as mathematical models in different branches of Physics, Chemistry, Biology, and Engineering, and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on estimates and functional analysis.Concentrating on a class of equations with nonlinearities of power type that lead to degenerate or singular parabolicity ("equations of porous medium type"), the aim of this text is to obtain sharp a priori estimates and decay rates for general classes of solutions in terms of estimates of particular problems. These estimates are the building blocks in understanding the qualitative theory, and the decay rates pave the way to the fine study of asymptotics. Many technically relevant questionsare presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including time decay, smoothing, extinction in finite time, and delayed regularity.
* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.
Presenting a selection of topics in the area of nonlocal and nonlinear diffusions, this book places a particular emphasis on new emerging subjects such as nonlocal operators in stationary and evolutionary problems and their applications, swarming models and applications to biology and mathematical physics, and nonlocal variational problems. The authors are some of the most well-known mathematicians in this innovative field, which is presently undergoing rapid development. The intended audience includes experts in elliptic and parabolic equations who are interested in extending their expertise to the nonlinear setting, as well as Ph.D. or postdoctoral students who want to enter into the most promising research topics in the field.
Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of Nonlinear Evolution Equations. Dedicated to him, Nonlinear Evolution Equations and Related Topics contains research papers written by highly distinguished mathematicians. They are all related to Philippe Benilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations.
Focusing on Poincaré, Nash and other Sobolev-type inequalities and their applications to the Laplace and heat diffusion equations on Riemannian manifolds, this text is an advanced graduate book that will also suit researchers.
Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of Nonlinear Evolution Equations. Dedicated to him, Nonlinear Evolution Equations and Related Topics contains research papers written by highly distinguished mathematicians. They are all related to Philippe Benilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations.
None
This volume contains the proceedings of the AMS Special Session on Celebrating M. M. Rao's Many Mathematical Contributions as he Turns 90 Years Old, held from November 9–10, 2019, at the University of California, Riverside, California. The articles show the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes and their applications. The volume also includes a biography of M. M. Rao and the list of his publications.