You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Algebraic geometry is introduced, with particular attention given to projective curves, rational functions and divisors. The construction of algebraic geometric codes is given, and the Tsfasman-Vladut-Zink result mentioned above it discussed."--BOOK JACKET.
Codes, Curves, and Signals: Common Threads in Communications is a collection of seventeen contributions from leading researchers in communications. The book provides a representative cross-section of cutting edge contemporary research in the fields of algebraic curves and the associated decoding algorithms, the use of signal processing techniques in coding theory, and the application of information-theoretic methods in communications and signal processing. The book is organized into three parts: Curves and Codes, Codes and Signals, and Signals and Information. Codes, Curves, and Signals: Common Threads in Communications is a tribute to the broad and profound influence of Richard E. Blahut on the fields of algebraic coding, information theory, and digital signal processing. All the contributors have individually and collectively dedicated their work to R. E. Blahut. Codes, Curves, and Signals: Common Threads in Communications is an excellent reference for researchers and professionals.
This English translation of a Russian book presents the basic notions of differential and algebraic topology, which are indispensable for specialists and useful for research mathematicians and theoretical physicists. In particular, ideas and results are introduced related to manifolds, cell spaces, coverings and fibrations, homotopy groups, homology and cohomology, intersection index, etc. The author notes, "The lecture note origins of the book left a significant imprint on itsstyle. It contains very few detailed proofs: I tried to give as many illustrations as possible and to show what really occurs in topology, not always explaining why it occurs." He concludes, "As a rule, only those proofs (or sketches of proofs) that are interesting per se and have importantgeneralizations are presented."
Codes, Designs, and Geometry brings together in one place important contributions and up-to-date research results in this important area. Codes, Designs, and Geometry serves as an excellent reference, providing insight into some of the most important research issues in the field.
First multi-year cumulation covers six years: 1965-70.
We learn by doing. We learn mathematics by doing problems. And we learn more mathematics by doing more problems. This is the sequel to Problems in Mathematical Analysis I (Volume 4 in the Student Mathematical Library series). If you want to hone your understanding of continuous and differentiable functions, this book contains hundreds of problems to help you do so. The emphasis here is on real functions of a single variable. The book is mainly geared toward students studying the basic principles of analysis. However, given its selection of problems, organization, and level, it would be an ideal choice for tutorial or problem-solving seminars, particularly those geared toward the Putnam exam. It is also suitable for self-study. The presentation of the material is designed to help student comprehension, to encourage them to ask their own questions, and to start research. The collection of problems will also help teachers who wish to incorporate problems into their lectures. The problems are grouped into sections according to the methods of solution. Solutions for the problems are provided.
This is an excellent introduction to algebraic geometry, which assumes only standard undergraduate mathematical topics: complex analysis, rings and fields, and topology. Reading this book will help establish the geometric intuition that lies behind the more advanced ideas and techniques used in the study of higher-dimensional varieties.
This is an introduction to game theory and applications with an emphasis on self-discovery from the perspective of a mathematical modeller. The book deals in a unified manner with the central concepts of both classical and evolutionary game theory. The key ideas are illustrated throughout by a wide variety of well-chosen examples of both human and non-human behavior, including car pooling, price fixing, food sharing, sex allocation and competition for territories or oviposition sites. There are numerous exercises with solutions.
Sophie Germain taught herself mathematics by candlelight, huddled in her bedclothes. Ada Byron Lovelace anticipated aspects of general-purpose digital computing by more than a century. Cora Ratto de Sadosky advanced messages of tolerance and equality while sharing her mathematical talents with generations of students. This captivating book gives voice to women mathematicians from the late eighteenth century through to the present day. It documents the complex nature of the conditions women around the world have faced--and continue to face--while pursuing their careers in mathematics. The stories of the three women above and those of many more appear here, each one enlightening and inspiring....
Based on a capstone course that the author taught to upper division undergraduate students with the goal to explain and visualize the connections between different areas of mathematics and the way different subject matters flow from one another, this book is suitable for those with a basic knowledge of high school mathematics.