You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nonlinear dynamics of complex processes is an active research field with large numbers of publications in basic research, and broad applications from diverse fields of science. Nonlinear dynamics as manifested by deterministic and stochastic evolution models of complex behavior has entered statistical physics, physical chemistry, biophysics, geophysics, astrophysics, theoretical ecology, semiconductor physics and -optics, etc. This field of research has induced a new terminology in science connected with new questions, problems, solutions and methods. New scenarios have emerged for spatio-temporal structures in dynamical systems far from equilibrium. Their analysis and possible control are i...
This collection of review articles is devoted to the modeling of ecological, epidemiological and evolutionary systems. Theoretical mathematical models are perhaps one of the most powerful approaches available for increasing our understanding of the complex population dynamics in these natural systems. Exciting new techniques are currently being developed to meet this challenge, such as generalized or structural modeling, adaptive dynamics or multiplicative processes. Many of these new techniques stem from the field of nonlinear dynamics and chaos theory, where even the simplest mathematical rule can generate a rich variety of dynamical behaviors that bear a strong analogy to biological populations.
An increasing number of scholars have begun to see science and technology as relevant issues in International Relations (IR), acknowledging the impact of material elements, technical instruments, and scientific practices on international security, statehood, and global governance. This two-volume collection brings the debate about science and technology to the center of International Relations. It shows how integrating science and technology translates into novel analytical frameworks, conceptual approaches and empirical puzzles, and thereby offers a state-of-the-art review of various methodological and theoretical ways in which sciences and technologies matter for the study of international...
This book is primarily concerned with the computational aspects of predictability of dynamical systems – in particular those where observation, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, for instance in celestial mechanics, one is confronted with the observation and modeling of systems without the possibility of altering the key parameters of the objects studied. Therefore, the numerical simulations offer an essential tool for analyzing these systems. With the widespread use of computer simulations to solve complex dynamical systems, the reliability of the numerical calculations is of ever-increasing interest and import...
The five volume set LNCS 7663, LNCS 7664, LNCS 7665, LNCS 7666 and LNCS 7667 constitutes the proceedings of the 19th International Conference on Neural Information Processing, ICONIP 2012, held in Doha, Qatar, in November 2012. The 423 regular session papers presented were carefully reviewed and selected from numerous submissions. These papers cover all major topics of theoretical research, empirical study and applications of neural information processing research. The 5 volumes represent 5 topical sections containing articles on theoretical analysis, neural modeling, algorithms, applications, as well as simulation and synthesis.
Applies complexity theory to cognitive science, and the result is a transformation of this field.
This book constitutes the refereed proceedings of the 22nd International Conference on Nonlinear Dynamics of Electronic Systems, NDES 2014, held in Albena, Bulgaria, in July 2014. The 47 revised full papers presented were carefully reviewed and selected from 65 submissions. The papers are organized in topical sections on nonlinear oscillators, circuits and electronic systems; networks and nonlinear dynamics and nonlinear phenomena in biological and physiological systems.
The International Conference on Complex Systems (ICCS) offers a unique interdisciplinary venue for researchers from the physical and biological sciences, social sciences, psychology and cognitive science, engineering, medicine, human systems, and global systems. This proceedings volume gathers selected papers from the conference. The New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI pursues research, education, knowledge dissemination, and community development efforts around the world to promote the study of complex systems and its application for the benefit of society. NECSI hosts the International Conference on Complex Systems and publishes the NECSI Book.
This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of ord...
In the early 1980s, the late luminary Tito Arecchi was the first to highlight the existence of chaos in a laser model. Since then, along with several colleagues, he developed many important lines of research in this field, such as generalized multistability, laser with injected signal, laser with delayed feedback and the worldwide accepted classification of lasers of A, B and C, depending on their typical relaxation rates. Later, chaos control and synchronization were investigated in lasers and other systems, providing innovative schemes. Very recently, in his last contribution to laser physics, the model of the laser with feedback demonstrating its universal features was revisited.This book aims to present the research activity of Prof. Arecchi and his colleagues in the domain of nonlinear dynamics of lasers, since his seminal works of 1982 till the latest. Also included is our last contribution on jerk dynamics of laser's minimal universal model and a brief history of the discovery of laser where the reader will discover or rediscover many anecdotes about it.