You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the conference on Manifolds, -Theory, and Related Topics, held from June 23–27, 2014, in Dubrovnik, Croatia. The articles contained in this volume are a collection of research papers featuring recent advances in homotopy theory, -theory, and their applications to manifolds. Topics covered include homotopy and manifold calculus, structured spectra, and their applications to group theory and the geometry of manifolds. This volume is a tribute to the influence of Tom Goodwillie in these fields.
This volume contains the proceedings of the Fourth Arolla Conference on Algebraic Topology, which took place in Arolla, Switzerland, from August 20-25, 2012. The papers in this volume cover topics such as category theory and homological algebra, functor homology, algebraic -theory, cobordism categories, group theory, generalized cohomology theories and multiplicative structures, the theory of iterated loop spaces, Smith-Toda complexes, and topological modular forms.
Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.
Bridge the gap between category theory and its applications in homotopy theory with this guide for graduate students and researchers.
This book is a collection of expository articles based on four lecture series presented during the 2012 Notre Dame Summer School in Topology and Field Theories. The four topics covered in this volume are: Construction of a local conformal field theory associated to a compact Lie group, a level and a Frobenius object in the corresponding fusion category; Field theory interpretation of certain polynomial invariants associated to knots and links; Homotopy theoretic construction of far-reaching generalizations of the topological field theories that Dijkgraf and Witten associated to finite groups; and a discussion of the action of the orthogonal group on the full subcategory of an -category consisting of the fully dualizable objects. The expository style of the articles enables non-experts to understand the basic ideas of this wide range of important topics.
Introduction to homological mirror symmetry from the point of view of representation theory, suitable for graduate students.
An introductory treatment to the homotopy theory of homotopical categories, presenting several models and comparisons between them.
Category theory has become the universal language of modern mathematics. This book is a collection of articles applying methods of category theory to the areas of algebra, geometry, and mathematical physics. Among others, this book contains articles on higher categories and their applications and on homotopy theoretic methods. The reader can learn about the exciting new interactions of category theory with very traditional mathematical disciplines.
The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory ex...
This volume contains the proceedings of the WIT: Women in Topology workshop, held from August 18-23, 2013, at the Banff International Research Station, Banff, Alberta, Canada. The Women in Topology workshop was devoted primarily to active collaboration by teams of five to seven participants, each including senior and junior researchers, as well as graduate students. This volume contains papers based on the results obtained by team projects in homotopy theory, including -infinity structures, equivariant homotopy theory, functor calculus, model categories, orbispaces, and topological Hochschild homology.